BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

238 related articles for article (PubMed ID: 22850749)

  • 1. Coordination chemistry strategies for dynamic helicates: time-programmable chirality switching with labile and inert metal helicates.
    Miyake H; Tsukube H
    Chem Soc Rev; 2012 Nov; 41(21):6977-91. PubMed ID: 22850749
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assembly of surface-confined homochiral helicates: chiral discrimination of DOPA and unidirectional charge transfer.
    Kaminker R; de Hatten X; Lahav M; Lupo F; Gulino A; Evmenenko G; Dutta P; Browne C; Nitschke JR; van der Boom ME
    J Am Chem Soc; 2013 Nov; 135(45):17052-9. PubMed ID: 24102100
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enantiomeric interpenetrating 3D nets with chiral silver helicates.
    Bai Y; Duan CY; Cai P; Dang DB; Meng QJ
    Dalton Trans; 2005 Aug; (16):2678-80. PubMed ID: 16075105
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamic control of chirality and self-assembly of double-stranded helicates with light.
    Zhao D; van Leeuwen T; Cheng J; Feringa BL
    Nat Chem; 2017 Mar; 9(3):250-256. PubMed ID: 28221361
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sugars to control ligand shape in metal complexes: conformationally constrained glycoligands with a predetermination of stereochemistry and a structural control.
    Garcia L; Maisonneuve S; Xie J; Guillot R; Dorlet P; Rivière E; Desmadril M; Lambert F; Policar C
    Inorg Chem; 2010 Aug; 49(16):7282-8. PubMed ID: 20690737
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Distinct M and P helical complexes of H2O and metal ions NiII, CuII, and ZnII with enantiomerically pure chiral bis(pyrrol-2-ylmethyleneamine)cyclohexane ligands: crystal structures and circular dichroism properties.
    Wang Y; Fu H; Shen F; Sheng X; Peng A; Gu Z; Ma H; Ma JS; Yao J
    Inorg Chem; 2007 Apr; 46(9):3548-56. PubMed ID: 17394311
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamic Helicates Self-Assembly from Homo- and Heterotopic Dynamic Covalent Ligand Strands.
    Santoro A; Holub J; Fik-Jaskółka MA; Vantomme G; Lehn JM
    Chemistry; 2020 Dec; 26(67):15664-15671. PubMed ID: 33073894
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chiral metallocycles: rational synthesis and novel applications.
    Lee SJ; Lin W
    Acc Chem Res; 2008 Apr; 41(4):521-37. PubMed ID: 18271561
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chiral information harvesting in dendritic metallopeptides.
    Ousaka N; Takeyama Y; Iida H; Yashima E
    Nat Chem; 2011 Sep; 3(11):856-61. PubMed ID: 22024881
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cholesterol-armed cyclens for helical metal complexes offering chiral self-aggregation and sensing of amino acid anions in aqueous solutions.
    Shinoda S; Okazaki T; Player TN; Misaki H; Hori K; Tsukube H
    J Org Chem; 2005 Mar; 70(5):1835-43. PubMed ID: 15730308
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coordination polymer gels with important environmental and biological applications.
    Jung JH; Lee JH; Silverman JR; John G
    Chem Soc Rev; 2013 Feb; 42(3):924-36. PubMed ID: 23192282
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Single- and double-stranded helical polymers: synthesis, structures, and functions.
    Yashima E; Maeda K; Furusho Y
    Acc Chem Res; 2008 Sep; 41(9):1166-80. PubMed ID: 18690750
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Coordination chemistry of tetradentate N-donor ligands containing two pyrazolyl-pyridine units separated by a 1,8-naphthyl spacer: dodecanuclear and tetranuclear coordination cages and cyclic helicates.
    Argent SP; Adams H; Riis-Johannessen T; Jeffery JC; Harding LP; Mamula O; Ward MD
    Inorg Chem; 2006 May; 45(10):3905-19. PubMed ID: 16676949
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design of ferrocene-dipeptide bioorganometallic conjugates to induce chirality-organized structures.
    Moriuchi T; Hirao T
    Acc Chem Res; 2010 Jul; 43(7):1040-51. PubMed ID: 20377253
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Coordination chemistry of conformation-flexible 1,2,3,4,5,6-cyclohexanehexacarboxylate: trapping various conformations in metal-organic frameworks.
    Wang J; Lin ZJ; Ou YC; Shen Y; Herchel R; Tong ML
    Chemistry; 2008; 14(24):7218-35. PubMed ID: 18618562
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The many facets of adenine: coordination, crystal patterns, and catalysis.
    Verma S; Mishra AK; Kumar J
    Acc Chem Res; 2010 Jan; 43(1):79-91. PubMed ID: 19719100
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Construction of double-stranded metallosupramolecular polymers with a controlled helicity by combination of salt bridges and metal coordination.
    Ikeda M; Tanaka Y; Hasegawa T; Furusho Y; Yashima E
    J Am Chem Soc; 2006 May; 128(21):6806-7. PubMed ID: 16719458
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Self-selecting homochiral quadruple-stranded helicates and control of supramolecular chirality.
    Boer SA; Turner DR
    Chem Commun (Camb); 2015 Dec; 51(98):17375-8. PubMed ID: 26434632
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The exceptionally rich coordination chemistry generated by Schiff-base ligands derived from o-vanillin.
    Andruh M
    Dalton Trans; 2015 Oct; 44(38):16633-53. PubMed ID: 26282536
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Twisted metal-amino acid nanobelts: chirality transcription from molecules to frameworks.
    Li C; Deng K; Tang Z; Jiang L
    J Am Chem Soc; 2010 Jun; 132(23):8202-9. PubMed ID: 20499874
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.