These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
256 related articles for article (PubMed ID: 22850791)
1. Plant β-1,3-glucanases: their biological functions and transgenic expression against phytopathogenic fungi. Balasubramanian V; Vashisht D; Cletus J; Sakthivel N Biotechnol Lett; 2012 Nov; 34(11):1983-90. PubMed ID: 22850791 [TBL] [Abstract][Full Text] [Related]
2. Genetic engineering of crop plants for fungal resistance: role of antifungal genes. Ceasar SA; Ignacimuthu S Biotechnol Lett; 2012 Jun; 34(6):995-1002. PubMed ID: 22350290 [TBL] [Abstract][Full Text] [Related]
3. Apoplastic extracts from a transgenic wheat line exhibiting lesion-mimic phenotype have multiple pathogenesis-related proteins that are antifungal. Anand A; Lei Z; Sumner LW; Mysore KS; Arakane Y; Bockus WW; Muthukrishnan S Mol Plant Microbe Interact; 2004 Dec; 17(12):1306-17. PubMed ID: 15597736 [TBL] [Abstract][Full Text] [Related]
4. Transgenic expression of plant chitinases to enhance disease resistance. Cletus J; Balasubramanian V; Vashisht D; Sakthivel N Biotechnol Lett; 2013 Nov; 35(11):1719-32. PubMed ID: 23794096 [TBL] [Abstract][Full Text] [Related]
5. Transcriptional regulation of the gluB promoter during plant response to infection. Mac A; Krzymowska M; Barabasz A; Hennig J Cell Mol Biol Lett; 2004; 9(4B):843-53. PubMed ID: 15647801 [TBL] [Abstract][Full Text] [Related]
6. Silencing of acidic pathogenesis-related PR-1 genes increases extracellular beta-(1->3)-glucanase activity at the onset of tobacco defence reactions. Rivière MP; Marais A; Ponchet M; Willats W; Galiana E J Exp Bot; 2008; 59(6):1225-39. PubMed ID: 18390849 [TBL] [Abstract][Full Text] [Related]
7. Pathogenesis-related proteins and peptides as promising tools for engineering plants with multiple stress tolerance. Ali S; Ganai BA; Kamili AN; Bhat AA; Mir ZA; Bhat JA; Tyagi A; Islam ST; Mushtaq M; Yadav P; Rawat S; Grover A Microbiol Res; 2018; 212-213():29-37. PubMed ID: 29853166 [TBL] [Abstract][Full Text] [Related]
8. Plant 'pathogenesis-related' proteins and their role in defense against pathogens. Stintzi A; Heitz T; Prasad V; Wiedemann-Merdinoglu S; Kauffmann S; Geoffroy P; Legrand M; Fritig B Biochimie; 1993; 75(8):687-706. PubMed ID: 8286442 [TBL] [Abstract][Full Text] [Related]
9. Genetic engineering for increasing fungal and bacterial disease resistance in crop plants. Wally O; Punja ZK GM Crops; 2010; 1(4):199-206. PubMed ID: 21844674 [TBL] [Abstract][Full Text] [Related]
10. Enhanced quantitative resistance against fungal disease by combinatorial expression of different barley antifungal proteins in transgenic tobacco. Jach G; Görnhardt B; Mundy J; Logemann J; Pinsdorf E; Leah R; Schell J; Maas C Plant J; 1995 Jul; 8(1):97-109. PubMed ID: 7655510 [TBL] [Abstract][Full Text] [Related]
11. [Studies of transgenic tobacco plants expressing beta-1,3-glucanase and chitinase genes and their potential for fungal resistance]. Lan HY; Tian YC; Wang CH; Liu GZ; Zhang LH; Wang LL; Chen ZH Yi Chuan Xue Bao; 2000; 27(1):70-7. PubMed ID: 10883543 [TBL] [Abstract][Full Text] [Related]
12. Greenhouse and field testing of transgenic wheat plants stably expressing genes for thaumatin-like protein, chitinase and glucanase against Fusarium graminearum. Anand A; Zhou T; Trick HN; Gill BS; Bockus WW; Muthukrishnan S J Exp Bot; 2003 Mar; 54(384):1101-11. PubMed ID: 12598580 [TBL] [Abstract][Full Text] [Related]
14. A thaumatin-like protein gene involved in cotton fiber secondary cell wall development enhances resistance against Verticillium dahliae and other stresses in transgenic tobacco. Munis MF; Tu L; Deng F; Tan J; Xu L; Xu S; Long L; Zhang X Biochem Biophys Res Commun; 2010 Feb; 393(1):38-44. PubMed ID: 20097164 [TBL] [Abstract][Full Text] [Related]
15. Cell-lytic activity of tobacco BY-2 induced by a fungal elicitor from alternaria alternata attributed to the expression of a class I beta-1,3-glucanase gene. Shinya T; Gondo S; Iijima H; Hanai K; Matsuoka H; Saito M Biosci Biotechnol Biochem; 2004 Jun; 68(6):1265-72. PubMed ID: 15215590 [TBL] [Abstract][Full Text] [Related]
16. Overexpression of TiERF1 enhances resistance to sharp eyespot in transgenic wheat. Chen L; Zhang Z; Liang H; Liu H; Du L; Xu H; Xin Z J Exp Bot; 2008; 59(15):4195-204. PubMed ID: 18953072 [TBL] [Abstract][Full Text] [Related]
17. The Arabidopsis AtNPR1 inversely modulates defense responses against fungal, bacterial, or viral pathogens while conferring hypersensitivity to abiotic stresses in transgenic rice. Quilis J; Peñas G; Messeguer J; Brugidou C; San Segundo B Mol Plant Microbe Interact; 2008 Sep; 21(9):1215-31. PubMed ID: 18700826 [TBL] [Abstract][Full Text] [Related]
18. Transgenic Pm3b wheat lines show resistance to powdery mildew in the field. Brunner S; Hurni S; Herren G; Kalinina O; von Burg S; Zeller SL; Schmid B; Winzeler M; Keller B Plant Biotechnol J; 2011 Oct; 9(8):897-910. PubMed ID: 21438988 [TBL] [Abstract][Full Text] [Related]
19. Development of a lesion-mimic phenotype in a transgenic wheat line overexpressing genes for pathogenesis-related (PR) proteins is dependent on salicylic acid concentration. Anand A; Schmelz EA; Muthukrishnan S Mol Plant Microbe Interact; 2003 Oct; 16(10):916-25. PubMed ID: 14558693 [TBL] [Abstract][Full Text] [Related]
20. Co-overexpression of chitinase and β-1,3-glucanase significantly enhanced the resistance of Iranian wheat cultivars to Fusarium. Mohammadizadeh-Heydari N; Tohidfar M; Maleki Zanjani B; Mohsenpour M; Ghanbari Moheb Seraj R; Esmaeilzadeh-Salestani K BMC Biotechnol; 2024 May; 24(1):35. PubMed ID: 38790016 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]