These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
256 related articles for article (PubMed ID: 22850791)
21. Pathogen-induced production of the antifungal AFP protein from Aspergillus giganteus confers resistance to the blast fungus Magnaporthe grisea in transgenic rice. Moreno AB; Peñas G; Rufat M; Bravo JM; Estopà M; Messeguer J; San Segundo B Mol Plant Microbe Interact; 2005 Sep; 18(9):960-72. PubMed ID: 16167766 [TBL] [Abstract][Full Text] [Related]
23. Expression of BvGLP-1 encoding a germin-like protein from sugar beet in Arabidopsis thaliana leads to resistance against phytopathogenic fungi. Knecht K; Seyffarth M; Desel C; Thurau T; Sherameti I; Lou B; Oelmüller R; Cai D Mol Plant Microbe Interact; 2010 Apr; 23(4):446-57. PubMed ID: 20192832 [TBL] [Abstract][Full Text] [Related]
24. Systemic resistance induced in Arabidopsis thaliana by Trichoderma asperellum SKT-1, a microbial pesticide of seedborne diseases of rice. Yoshioka Y; Ichikawa H; Naznin HA; Kogure A; Hyakumachi M Pest Manag Sci; 2012 Jan; 68(1):60-6. PubMed ID: 21674754 [TBL] [Abstract][Full Text] [Related]
25. Increased resistance to late leaf spot disease in transgenic peanut using a combination of PR genes. Vasavirama K; Kirti PB Funct Integr Genomics; 2012 Nov; 12(4):625-34. PubMed ID: 23053199 [TBL] [Abstract][Full Text] [Related]
27. Pathogen resistance of transgenic tobacco plants producing caffeine. Kim YS; Sano H Phytochemistry; 2008 Feb; 69(4):882-8. PubMed ID: 18036626 [TBL] [Abstract][Full Text] [Related]
28. Red rot resistant transgenic sugarcane developed through expression of β-1,3-glucanase gene. Nayyar S; Sharma BK; Kaur A; Kalia A; Sanghera GS; Thind KS; Yadav IS; Sandhu JS PLoS One; 2017; 12(6):e0179723. PubMed ID: 28658312 [TBL] [Abstract][Full Text] [Related]
29. Stacking of antimicrobial genes in potato transgenic plants confers increased resistance to bacterial and fungal pathogens. Rivero M; Furman N; Mencacci N; Picca P; Toum L; Lentz E; Bravo-Almonacid F; Mentaberry A J Biotechnol; 2012 Jan; 157(2):334-43. PubMed ID: 22115953 [TBL] [Abstract][Full Text] [Related]
30. Antimicrobial activity of gamma-thionin-like soybean SE60 in E. coli and tobacco plants. Choi Y; Choi YD; Lee JS Biochem Biophys Res Commun; 2008 Oct; 375(2):230-4. PubMed ID: 18700134 [TBL] [Abstract][Full Text] [Related]
31. Immunocytochemistry of plant defense mechanisms induced upon microbial attack. Benhamou N Microsc Res Tech; 1995 May; 31(1):63-78. PubMed ID: 7626800 [TBL] [Abstract][Full Text] [Related]
32. PR-13/Thionin but not PR-1 mediates bacterial resistance in Nicotiana attenuata in nature, and neither influences herbivore resistance. Rayapuram C; Wu J; Haas C; Baldwin IT Mol Plant Microbe Interact; 2008 Jul; 21(7):988-1000. PubMed ID: 18533839 [TBL] [Abstract][Full Text] [Related]
33. Proteomic analysis of pathogenesis-related proteins (PRs) induced by compatible and incompatible interactions of pepper mild mottle virus (PMMoV) in Capsicum chinense L3 plants. Elvira MI; Galdeano MM; Gilardi P; García-Luque I; Serra MT J Exp Bot; 2008; 59(6):1253-65. PubMed ID: 18375936 [TBL] [Abstract][Full Text] [Related]
34. Transformation of tobacco and Arabidopsis plants with Stellaria media genes encoding novel hevein-like peptides increases their resistance to fungal pathogens. R Shukurov R; D Voblikova V; Nikonorova AK; Komakhin RA; V Komakhina V; A Egorov T; V Grishin E; V Babakov A Transgenic Res; 2012 Apr; 21(2):313-25. PubMed ID: 21706181 [TBL] [Abstract][Full Text] [Related]
35. A peroxiredoxin Q homolog from gentians is involved in both resistance against fungal disease and oxidative stress. Kiba A; Nishihara M; Tsukatani N; Nakatsuka T; Kato Y; Yamamura S Plant Cell Physiol; 2005 Jun; 46(6):1007-15. PubMed ID: 15840643 [TBL] [Abstract][Full Text] [Related]
36. Interactions between engineered tomato plants expressing antifungal enzymes and nontarget fungi in the rhizosphere and phyllosphere. Girlanda M; Bianciotto V; Cappellazzo GA; Casieri L; Bergero R; Martino E; Luppi AM; Perotto S FEMS Microbiol Lett; 2008 Nov; 288(1):9-18. PubMed ID: 18778277 [TBL] [Abstract][Full Text] [Related]
37. Transformation of blackgram (Vigna mungo (L.) Hepper) by barley chitinase and ribosome-inactivating protein genes towards improving resistance to Corynespora leaf spot fungal disease. Chopra R; Saini R Appl Biochem Biotechnol; 2014 Dec; 174(8):2791-800. PubMed ID: 25227687 [TBL] [Abstract][Full Text] [Related]
38. Molecular characterization and evolution of carnivorous sundew (Drosera rotundifolia L.) class V β-1,3-glucanase. Michalko J; Renner T; Mészáros P; Socha P; Moravčíková J; Blehová A; Libantová J; Polóniová Z; Matušíková I Planta; 2017 Jan; 245(1):77-91. PubMed ID: 27580619 [TBL] [Abstract][Full Text] [Related]
39. Cloning and characterization of six highly similar endo-1,3-beta-glucanase genes in hexaploid wheat. Higa-Nishiyama A; Ohsato S; Banno S; Woo SH; Fujimura M; Yamaguchi I; Kimura M Plant Physiol Biochem; 2006; 44(11-12):666-73. PubMed ID: 17110121 [TBL] [Abstract][Full Text] [Related]
40. Combined expression of chitinase and lipid transfer protein genes in transgenic carrot plants enhances resistance to foliar fungal pathogens. Jayaraj J; Punja ZK Plant Cell Rep; 2007 Sep; 26(9):1539-46. PubMed ID: 17508215 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]