These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
442 related articles for article (PubMed ID: 22850809)
1. Changes of growth, photosynthesis and alteration of leaf antioxidative defence system of tea [Camellia sinensis (L.) O. Kuntze] seedlings under aluminum stress. Mukhopadyay M; Bantawa P; Das A; Sarkar B; Bera B; Ghosh P; Mondal TK Biometals; 2012 Dec; 25(6):1141-54. PubMed ID: 22850809 [TBL] [Abstract][Full Text] [Related]
2. Amelioration of iron toxicity: A mechanism for aluminum-induced growth stimulation in tea plants. Hajiboland R; Barceló J; Poschenrieder C; Tolrà R J Inorg Biochem; 2013 Nov; 128():183-7. PubMed ID: 23910825 [TBL] [Abstract][Full Text] [Related]
3. Aluminum induced physiological and proteomic responses in tea (Camellia sinensis) roots and leaves. Xu Q; Wang Y; Ding Z; Fan K; Ma D; Zhang Y; Yin Q Plant Physiol Biochem; 2017 Jun; 115():141-151. PubMed ID: 28364710 [TBL] [Abstract][Full Text] [Related]
4. Rhizosphere carbon deposition, oxidative stress and nutritional changes in two poplar species exposed to aluminum. Naik D; Smith E; Cumming JR Tree Physiol; 2009 Mar; 29(3):423-36. PubMed ID: 19203961 [TBL] [Abstract][Full Text] [Related]
5. Copper induced oxidative stress in tea (Camellia sinensis) leaves. Saha D; Mandal S; Saha A J Environ Biol; 2012 Sep; 33(5):861-6. PubMed ID: 23734451 [TBL] [Abstract][Full Text] [Related]
6. Mechanism for the detoxification of aluminum in roots of tea plant (Camellia sinensis (L.) Kuntze). Morita A; Yanagisawa O; Takatsu S; Maeda S; Hiradate S Phytochemistry; 2008 Jan; 69(1):147-53. PubMed ID: 17643454 [TBL] [Abstract][Full Text] [Related]
7. Aluminium and nutrients induce changes in the profiles of phenolic substances in tea plants (Camellia sinensis CV TTES, No. 12 (TTE)). Chen YM; Tsao TM; Liu CC; Lin KC; Wang MK J Sci Food Agric; 2011 Apr; 91(6):1111-7. PubMed ID: 21384367 [TBL] [Abstract][Full Text] [Related]
8. Root release and metabolism of organic acids in tea plants in response to phosphorus supply. Lin ZH; Chen LS; Chen RB; Zhang FZ; Jiang HX; Tang N; Smith BR J Plant Physiol; 2011 May; 168(7):644-52. PubMed ID: 21315475 [TBL] [Abstract][Full Text] [Related]
9. Phosphorus alleviates aluminum-induced inhibition of growth and photosynthesis in Citrus grandis seedlings. Jiang HX; Tang N; Zheng JG; Li Y; Chen LS Physiol Plant; 2009 Nov; 137(3):298-311. PubMed ID: 19832942 [TBL] [Abstract][Full Text] [Related]
10. Physiological and biochemical responses of tea seedlings (Camellia sinensis) to simulated acid rain conditions. Zhang C; Yi X; Gao X; Wang M; Shao C; Lv Z; Chen J; Liu Z; Shen C Ecotoxicol Environ Saf; 2020 Apr; 192():110315. PubMed ID: 32058162 [TBL] [Abstract][Full Text] [Related]
11. Exogenous Melatonin Enhances Cold, Salt and Drought Stress Tolerance by Improving Antioxidant Defense in Tea Plant ( Li J; Yang Y; Sun K; Chen Y; Chen X; Li X Molecules; 2019 May; 24(9):. PubMed ID: 31083611 [TBL] [Abstract][Full Text] [Related]
12. CaCl2 improves post-drought recovery potential in Camellia sinensis (L) O. Kuntze. Upadhyaya H; Panda SK; Dutta BK Plant Cell Rep; 2011 Apr; 30(4):495-503. PubMed ID: 21153899 [TBL] [Abstract][Full Text] [Related]
13. Proanthocyanidin-Aluminum Complexes Improve Aluminum Resistance and Detoxification of Fu Z; Jiang X; Li WW; Shi Y; Lai S; Zhuang J; Yao S; Liu Y; Hu J; Gao L; Xia T J Agric Food Chem; 2020 Jul; 68(30):7861-7869. PubMed ID: 32680420 [TBL] [Abstract][Full Text] [Related]
14. Cell wall pectin methyl-esterification and organic acids of root tips involve in aluminum tolerance in Camellia sinensis. Li D; Shu Z; Ye X; Zhu J; Pan J; Wang W; Chang P; Cui C; Shen J; Fang W; Zhu X; Wang Y Plant Physiol Biochem; 2017 Oct; 119():265-274. PubMed ID: 28917145 [TBL] [Abstract][Full Text] [Related]
15. A comparison of aluminum levels in tea products from Hong Kong markets and in varieties of tea plants from Hong Kong and India. Fung KF; Carr HP; Poon BH; Wong MH Chemosphere; 2009 May; 75(7):955-62. PubMed ID: 19230955 [TBL] [Abstract][Full Text] [Related]
16. Physiological characterization of maize tolerance to low dose of aluminum, highlighted by promoted leaf growth. Wang L; Fan XW; Pan JL; Huang ZB; Li YZ Planta; 2015 Dec; 242(6):1391-403. PubMed ID: 26253178 [TBL] [Abstract][Full Text] [Related]
17. Differential speed of activation in antioxidant system in three oat genotypes. Pereira LB; Cargnelutti D; Rossato LV; Gonçalves JF; Tabaldi LA; Schmatz R; Vieira JM; Dressler V; Nicoloso FT; Federizzi LC; Morsch VM; Schetinger MR J Inorg Biochem; 2013 Nov; 128():202-7. PubMed ID: 23998202 [TBL] [Abstract][Full Text] [Related]
18. Exogenous indole acetic acid alleviates Cd toxicity in tea (Camellia sinensis). Zhang C; He Q; Wang M; Gao X; Chen J; Shen C Ecotoxicol Environ Saf; 2020 Mar; 190():110090. PubMed ID: 31874405 [TBL] [Abstract][Full Text] [Related]
19. Exogenous Melatonin Alleviates Cold Stress by Promoting Antioxidant Defense and Redox Homeostasis in Camellia sinensis L. Li X; Wei JP; Scott ER; Liu JW; Guo S; Li Y; Zhang L; Han WY Molecules; 2018 Jan; 23(1):. PubMed ID: 29342935 [TBL] [Abstract][Full Text] [Related]
20. Differential responses of antioxidative enzymes and lipid peroxidation to salt stress in salt-tolerant Plantago maritima and salt-sensitive Plantago media. Sekmen AH; Türkan I; Takio S Physiol Plant; 2007 Nov; 131(3):399-411. PubMed ID: 18251879 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]