BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

358 related articles for article (PubMed ID: 22851158)

  • 1. Energetics of ligand binding to G-quadruplexes.
    Giancola C; Pagano B
    Top Curr Chem; 2013; 330():211-42. PubMed ID: 22851158
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [G-quadruplex ligands: mechanisms of anticancer action and target binding].
    Il'inskiĭ NS; Varizhuk AM; Beniaminov AD; Puzanov MA; Shchelkina AK; Kaliuzhnyĭ DN
    Mol Biol (Mosk); 2014; 48(6):891-907. PubMed ID: 25845230
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interaction of minor groove ligands with G-quadruplexes: thermodynamic contributions of the number of quartets, T-U substitutions, and conformation.
    Prislan I; Khutsishvili I; Marky LA
    Biochimie; 2011 Aug; 93(8):1341-50. PubMed ID: 21684318
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of pyridyl substituents on the thermodynamics of porphyrin binding to G-quadruplex DNA.
    Rowland GB; Barnett K; Dupont JI; Akurathi G; Le VH; Lewis EA
    Bioorg Med Chem; 2013 Dec; 21(23):7515-22. PubMed ID: 24148836
    [TBL] [Abstract][Full Text] [Related]  

  • 5. G-quadruplex structures and their interaction diversity with ligands.
    Zhang S; Wu Y; Zhang W
    ChemMedChem; 2014 May; 9(5):899-911. PubMed ID: 24729465
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Calorimetric and spectroscopic investigations of the binding of metallated porphyrins to G-quadruplex DNA.
    DuPont JI; Henderson KL; Metz A; Le VH; Emerson JP; Lewis EA
    Biochim Biophys Acta; 2016 May; 1860(5):902-909. PubMed ID: 26363462
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermodynamic analysis of quadruplex DNA-drug interaction.
    Pagano B; Mattia CA; Virno A; Randazzo A; Mayol L; Giancola C
    Nucleosides Nucleotides Nucleic Acids; 2007; 26(6-7):761-5. PubMed ID: 18066897
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Affinity of the anthracycline antitumor drugs Doxorubicin and Sabarubicin for human telomeric G-quadruplex structures.
    Manet I; Manoli F; Zambelli B; Andreano G; Masi A; Cellai L; Monti S
    Phys Chem Chem Phys; 2011 Jan; 13(2):540-51. PubMed ID: 21052579
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design and synthesis of new benzimidazole-carbazole conjugates for the stabilization of human telomeric DNA, telomerase inhibition, and their selective action on cancer cells.
    Maji B; Kumar K; Kaulage M; Muniyappa K; Bhattacharya S
    J Med Chem; 2014 Aug; 57(16):6973-88. PubMed ID: 25062468
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spectroscopic and thermodynamic insights into the interaction between proflavine and human telomeric G-quadruplex DNA.
    Kumar V; Sengupta A; Gavvala K; Koninti RK; Hazra P
    J Phys Chem B; 2014 Sep; 118(38):11090-9. PubMed ID: 25181397
    [TBL] [Abstract][Full Text] [Related]  

  • 11. NMR-Based model of a telomerase-inhibiting compound bound to G-quadruplex DNA.
    Fedoroff OY; Salazar M; Han H; Chemeris VV; Kerwin SM; Hurley LH
    Biochemistry; 1998 Sep; 37(36):12367-74. PubMed ID: 9730808
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quadruplex Nucleic Acids as Novel Therapeutic Targets.
    Neidle S
    J Med Chem; 2016 Jul; 59(13):5987-6011. PubMed ID: 26840940
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Porphyrin-based design of bioinspired multitarget quadruplex ligands.
    Laguerre A; Desbois N; Stefan L; Richard P; Gros CP; Monchaud D
    ChemMedChem; 2014 Sep; 9(9):2035-9. PubMed ID: 24678052
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Polycyclic azoniahetarenes: assessing the binding parameters of complexes between unsubstituted ligands and G-quadruplex DNA.
    Jäger K; Bats JW; Ihmels H; Granzhan A; Uebach S; Patrick BO
    Chemistry; 2012 Aug; 18(35):10903-15. PubMed ID: 22807262
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Discovery of a drug-like G-quadruplex binding ligand by high-throughput docking.
    Ma DL; Lai TS; Chan FY; Chung WH; Abagyan R; Leung YC; Wong KY
    ChemMedChem; 2008 Jun; 3(6):881-4. PubMed ID: 18383062
    [No Abstract]   [Full Text] [Related]  

  • 16. Targeting G-quadruplex DNA structures in the telomere and oncogene promoter regions by benzimidazole‒carbazole ligands.
    Kaulage MH; Maji B; Pasadi S; Ali A; Bhattacharya S; Muniyappa K
    Eur J Med Chem; 2018 Mar; 148():178-194. PubMed ID: 29459277
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural basis for telomeric G-quadruplex targeting by naphthalene diimide ligands.
    Collie GW; Promontorio R; Hampel SM; Micco M; Neidle S; Parkinson GN
    J Am Chem Soc; 2012 Feb; 134(5):2723-31. PubMed ID: 22280460
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design, synthesis, biophysical and biological studies of trisubstituted naphthalimides as G-quadruplex ligands.
    Peduto A; Pagano B; Petronzi C; Massa A; Esposito V; Virgilio A; Paduano F; Trapasso F; Fiorito F; Florio S; Giancola C; Galeone A; Filosa R
    Bioorg Med Chem; 2011 Nov; 19(21):6419-29. PubMed ID: 21944546
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Binding properties of human telomeric quadruplex multimers: a new route for drug design.
    Cummaro A; Fotticchia I; Franceschin M; Giancola C; Petraccone L
    Biochimie; 2011 Sep; 93(9):1392-400. PubMed ID: 21527309
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spectroscopic, molecular modeling, and NMR-spectroscopic investigation of the binding mode of the natural alkaloids berberine and sanguinarine to human telomeric G-quadruplex DNA.
    Bessi I; Bazzicalupi C; Richter C; Jonker HR; Saxena K; Sissi C; Chioccioli M; Bianco S; Bilia AR; Schwalbe H; Gratteri P
    ACS Chem Biol; 2012 Jun; 7(6):1109-19. PubMed ID: 22486369
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.