These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 22851207)

  • 1. Mechanism of the bell-shaped profile of ribonuclease a activity: molecular dynamic approach.
    Dayer MR; Ghayour O; Dayer MS
    Protein J; 2012 Oct; 31(7):573-9. PubMed ID: 22851207
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanistic studies on substrate inhibition and substrate activation of ribonuclease A: experimental and
    Dehghan Shasaltaneh M; Naghdi E; Moosavi-Nejad Z
    J Biomol Struct Dyn; 2024 Aug; 42(13):6628-6644. PubMed ID: 37539792
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Origin of the 'inactivation' of ribonuclease A at low salt concentration.
    Park C; Raines RT
    FEBS Lett; 2000 Feb; 468(2-3):199-202. PubMed ID: 10692586
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The correlation of RNase A enzymatic activity with the changes in the distance between Nepsilon2-His12 and N delta1-His119 upon addition of stabilizing and destabilizing salts.
    Moosavi-Movahedi AA; Gharanfoli M; Jalili S; Ahmad F; Chamani J; Hakimelahi GH; Sadeghi M; Amani M; Saboury AA
    Protein J; 2006 Feb; 25(2):117-25. PubMed ID: 16862454
    [TBL] [Abstract][Full Text] [Related]  

  • 5. One Peptide Reveals the Two Faces of α-Helix Unfolding-Folding Dynamics.
    Jesus CSH; Cruz PF; Arnaut LG; Brito RMM; Serpa C
    J Phys Chem B; 2018 Apr; 122(14):3790-3800. PubMed ID: 29558133
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantitative analysis of the effect of salt concentration on enzymatic catalysis.
    Park C; Raines RT
    J Am Chem Soc; 2001 Nov; 123(46):11472-9. PubMed ID: 11707126
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Catalysis by ribonuclease A is limited by the rate of substrate association.
    Park C; Raines RT
    Biochemistry; 2003 Apr; 42(12):3509-18. PubMed ID: 12653555
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Perturbation of the Conformational Dynamics of an Active-Site Loop Alters Enzyme Activity.
    Gagné D; French RL; Narayanan C; Simonović M; Agarwal PK; Doucet N
    Structure; 2015 Dec; 23(12):2256-2266. PubMed ID: 26655472
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Salts and glycine increase reversibility and decrease aggregation during thermal unfolding of ribonuclease-A.
    Kita Y; Arakawa T
    Biosci Biotechnol Biochem; 2002 Apr; 66(4):880-2. PubMed ID: 12036068
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The first crystal structure of human RNase 6 reveals a novel substrate-binding and cleavage site arrangement.
    Prats-Ejarque G; Arranz-Trullén J; Blanco JA; Pulido D; Nogués MV; Moussaoui M; Boix E
    Biochem J; 2016 Jun; 473(11):1523-36. PubMed ID: 27013146
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The flexibility of a distant loop modulates active site motion and product release in ribonuclease A.
    Doucet N; Watt ED; Loria JP
    Biochemistry; 2009 Aug; 48(30):7160-8. PubMed ID: 19588901
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Glutamate Induced Thermal Equilibrium Intermediate and Counteracting Effect on Chemical Denaturation of Proteins.
    Anumalla B; Prabhu NP
    J Phys Chem B; 2018 Jan; 122(3):1132-1144. PubMed ID: 29272129
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural and functional importance of local and global conformational fluctuations in the RNase A superfamily.
    Gagné D; Doucet N
    FEBS J; 2013 Nov; 280(22):5596-607. PubMed ID: 23763751
    [TBL] [Abstract][Full Text] [Related]  

  • 14. His ... Asp catalytic dyad of ribonuclease A: histidine pKa values in the wild-type, D121N, and D121A enzymes.
    Quirk DJ; Raines RT
    Biophys J; 1999 Mar; 76(3):1571-9. PubMed ID: 10049337
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A phosphate-binding subsite in bovine pancreatic ribonuclease A can be converted into a very efficient catalytic site.
    Moussaoui M; Cuchillo CM; Nogués MV
    Protein Sci; 2007 Jan; 16(1):99-109. PubMed ID: 17192592
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural basis for salt-dependent folding of ribonuclease H1 from halophilic archaeon Halobacterium sp. NRC-1.
    You DJ; Jongruja N; Tannous E; Angkawidjaja C; Koga Y; Kanaya S
    J Struct Biol; 2014 Aug; 187(2):119-128. PubMed ID: 24972277
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of aspartic acid 121 in human pancreatic ribonuclease catalysis.
    Gaur D; Batra JK
    Mol Cell Biochem; 2005 Jul; 275(1-2):95-101. PubMed ID: 16335788
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fluorescence polarization study of a salt bridge between a single chain Fv and its antigen ribonuclease A.
    Katakura Y; Kumamoto T; Iwai Y; Kurokawa Y; Omasa T; Suga K
    Mol Immunol; 1997; 34(12-13):887-90. PubMed ID: 9464524
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ionic interactions in crystalline bovine pancreatic ribonuclease A.
    Fedorov AA; Joseph-McCarthy D; Fedorov E; Sirakova D; Graf I; Almo SC
    Biochemistry; 1996 Dec; 35(50):15962-79. PubMed ID: 8973167
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Conformational changes below the Tm: molecular dynamics studies of the thermal pretransition of ribonuclease A.
    Merkley ED; Bernard B; Daggett V
    Biochemistry; 2008 Jan; 47(3):880-92. PubMed ID: 18161991
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.