BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

325 related articles for article (PubMed ID: 22851320)

  • 1. Conformational changes in tubulin in GMPCPP and GDP-taxol microtubules observed by cryoelectron microscopy.
    Yajima H; Ogura T; Nitta R; Okada Y; Sato C; Hirokawa N
    J Cell Biol; 2012 Aug; 198(3):315-22. PubMed ID: 22851320
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-resolution microtubule structures reveal the structural transitions in αβ-tubulin upon GTP hydrolysis.
    Alushin GM; Lander GC; Kellogg EH; Zhang R; Baker D; Nogales E
    Cell; 2014 May; 157(5):1117-29. PubMed ID: 24855948
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermodynamic and structural analysis of microtubule assembly: the role of GTP hydrolysis.
    Vulevic B; Correia JJ
    Biophys J; 1997 Mar; 72(3):1357-75. PubMed ID: 9138581
    [TBL] [Abstract][Full Text] [Related]  

  • 4. GDP-tubulin incorporation into growing microtubules modulates polymer stability.
    Valiron O; Arnal I; Caudron N; Job D
    J Biol Chem; 2010 Jun; 285(23):17507-13. PubMed ID: 20371874
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Straight GDP-tubulin protofilaments form in the presence of taxol.
    Elie-Caille C; Severin F; Helenius J; Howard J; Muller DJ; Hyman AA
    Curr Biol; 2007 Oct; 17(20):1765-70. PubMed ID: 17919908
    [TBL] [Abstract][Full Text] [Related]  

  • 6. X-ray and Cryo-EM structures reveal mutual conformational changes of Kinesin and GTP-state microtubules upon binding.
    Morikawa M; Yajima H; Nitta R; Inoue S; Ogura T; Sato C; Hirokawa N
    EMBO J; 2015 May; 34(9):1270-86. PubMed ID: 25777528
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nucleotide-dependent bending flexibility of tubulin regulates microtubule assembly.
    Wang HW; Nogales E
    Nature; 2005 Jun; 435(7044):911-5. PubMed ID: 15959508
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural changes at microtubule ends accompanying GTP hydrolysis: information from a slowly hydrolyzable analogue of GTP, guanylyl (alpha,beta)methylenediphosphonate.
    Müller-Reichert T; Chrétien D; Severin F; Hyman AA
    Proc Natl Acad Sci U S A; 1998 Mar; 95(7):3661-6. PubMed ID: 9520422
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microtubule structure at improved resolution.
    Meurer-Grob P; Kasparian J; Wade RH
    Biochemistry; 2001 Jul; 40(27):8000-8. PubMed ID: 11434769
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evidence that a single monolayer tubulin-GTP cap is both necessary and sufficient to stabilize microtubules.
    Caplow M; Shanks J
    Mol Biol Cell; 1996 Apr; 7(4):663-75. PubMed ID: 8730106
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An atomistic view of microtubule stabilization by GTP.
    Quiniou E; Guichard P; Perahia D; Marco S; Mouawad L
    Structure; 2013 May; 21(5):833-43. PubMed ID: 23623730
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural model for differential cap maturation at growing microtubule ends.
    Estévez-Gallego J; Josa-Prado F; Ku S; Buey RM; Balaguer FA; Prota AE; Lucena-Agell D; Kamma-Lorger C; Yagi T; Iwamoto H; Duchesne L; Barasoain I; Steinmetz MO; Chrétien D; Kamimura S; Díaz JF; Oliva MA
    Elife; 2020 Mar; 9():. PubMed ID: 32151315
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intrinsic bending and structural rearrangement of tubulin dimer: molecular dynamics simulations and coarse-grained analysis.
    Gebremichael Y; Chu JW; Voth GA
    Biophys J; 2008 Sep; 95(5):2487-99. PubMed ID: 18515385
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural transitions in the GTP cap visualized by cryo-electron microscopy of catalytically inactive microtubules.
    LaFrance BJ; Roostalu J; Henkin G; Greber BJ; Zhang R; Normanno D; McCollum CO; Surrey T; Nogales E
    Proc Natl Acad Sci U S A; 2022 Jan; 119(2):. PubMed ID: 34996871
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assembly of GMPCPP-bound tubulin into helical ribbons and tubes and effect of colchicine.
    Wang HW; Long S; Finley KR; Nogales E
    Cell Cycle; 2005 Sep; 4(9):1157-60. PubMed ID: 16123589
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The free energy for hydrolysis of a microtubule-bound nucleotide triphosphate is near zero: all of the free energy for hydrolysis is stored in the microtubule lattice.
    Caplow M; Ruhlen RL; Shanks J
    J Cell Biol; 1994 Nov; 127(3):779-88. PubMed ID: 7962059
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of GTP hydrolysis in microtubule dynamics: information from a slowly hydrolyzable analogue, GMPCPP.
    Hyman AA; Salser S; Drechsel DN; Unwin N; Mitchison TJ
    Mol Biol Cell; 1992 Oct; 3(10):1155-67. PubMed ID: 1421572
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Islands containing slowly hydrolyzable GTP analogs promote microtubule rescues.
    Tropini C; Roth EA; Zanic M; Gardner MK; Howard J
    PLoS One; 2012; 7(1):e30103. PubMed ID: 22272281
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Temperature dependence rigidity of non-taxol stabilized single microtubules.
    Kawaguchi K; Yamaguchi A
    Biochem Biophys Res Commun; 2010 Nov; 402(1):66-9. PubMed ID: 20920471
    [TBL] [Abstract][Full Text] [Related]  

  • 20. X-ray fiber diffraction analysis shows dynamic changes in axial tubulin repeats in native microtubules depending on paclitaxel content, temperature and GTP-hydrolysis.
    Kamimura S; Fujita Y; Wada Y; Yagi T; Iwamoto H
    Cytoskeleton (Hoboken); 2016 Mar; 73(3):131-44. PubMed ID: 26873786
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.