These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 22851473)

  • 1. Bootstrap aggregating of alternating decision trees to detect sets of SNPs that associate with disease.
    Guy RT; Santago P; Langefeld CD
    Genet Epidemiol; 2012 Feb; 36(2):99-106. PubMed ID: 22851473
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A method combining a random forest-based technique with the modeling of linkage disequilibrium through latent variables, to run multilocus genome-wide association studies.
    Sinoquet C
    BMC Bioinformatics; 2018 Mar; 19(1):106. PubMed ID: 29587628
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Boosting alternating decision trees modeling of disease trait information.
    Liu KY; Lin J; Zhou X; Wong ST
    BMC Genet; 2005 Dec; 6 Suppl 1(Suppl 1):S132. PubMed ID: 16451591
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genome-wide association data classification and SNPs selection using two-stage quality-based Random Forests.
    Nguyen TT; Huang J; Wu Q; Nguyen T; Li M
    BMC Genomics; 2015; 16 Suppl 2(Suppl 2):S5. PubMed ID: 25708662
    [TBL] [Abstract][Full Text] [Related]  

  • 5. SNP selection and classification of genome-wide SNP data using stratified sampling random forests.
    Wu Q; Ye Y; Liu Y; Ng MK
    IEEE Trans Nanobioscience; 2012 Sep; 11(3):216-27. PubMed ID: 22987127
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Speeding disease gene discovery by sequence based candidate prioritization.
    Adie EA; Adams RR; Evans KL; Porteous DJ; Pickard BS
    BMC Bioinformatics; 2005 Mar; 6():55. PubMed ID: 15766383
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Finding associations in dense genetic maps: a genetic algorithm approach.
    Clark TG; De Iorio M; Griffiths RC; Farrall M
    Hum Hered; 2005; 60(2):97-108. PubMed ID: 16220001
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Random forests on Hadoop for genome-wide association studies of multivariate neuroimaging phenotypes.
    Wang Y; Goh W; Wong L; Montana G;
    BMC Bioinformatics; 2013; 14 Suppl 16(Suppl 16):S6. PubMed ID: 24564704
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimal selection of SNP markers for disease association studies.
    Halldórsson BV; Istrail S; De La Vega FM
    Hum Hered; 2004; 58(3-4):190-202. PubMed ID: 15812176
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Markov blanket-based method for detecting causal SNPs in GWAS.
    Han B; Park M; Chen XW
    BMC Bioinformatics; 2010 Apr; 11 Suppl 3(Suppl 3):S5. PubMed ID: 20438652
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Screen and clean: a tool for identifying interactions in genome-wide association studies.
    Wu J; Devlin B; Ringquist S; Trucco M; Roeder K
    Genet Epidemiol; 2010 Apr; 34(3):275-85. PubMed ID: 20088021
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Machine Learning-Based Method for Obesity Risk Evaluation Using Single-Nucleotide Polymorphisms Derived from Next-Generation Sequencing.
    Wang HY; Chang SC; Lin WY; Chen CH; Chiang SH; Huang KY; Chu BY; Lu JJ; Lee TY
    J Comput Biol; 2018 Dec; 25(12):1347-1360. PubMed ID: 30204480
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Supervised learning-based tagSNP selection for genome-wide disease classifications.
    Liu Q; Yang J; Chen Z; Yang MQ; Sung AH; Huang X
    BMC Genomics; 2008; 9 Suppl 1(Suppl 1):S6. PubMed ID: 18366619
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mining gold dust under the genome wide significance level: a two-stage approach to analysis of GWAS.
    Shi G; Boerwinkle E; Morrison AC; Gu CC; Chakravarti A; Rao DC
    Genet Epidemiol; 2011 Feb; 35(2):111-8. PubMed ID: 21254218
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An efficient weighted tag SNP-set analytical method in genome-wide association studies.
    Yan B; Wang S; Jia H; Liu X; Wang X
    BMC Genet; 2015 Mar; 16():25. PubMed ID: 25879733
    [TBL] [Abstract][Full Text] [Related]  

  • 16. TRM: a powerful two-stage machine learning approach for identifying SNP-SNP interactions.
    Lin HY; Chen YA; Tsai YY; Qu X; Tseng TS; Park JY
    Ann Hum Genet; 2012 Jan; 76(1):53-62. PubMed ID: 22150548
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative analysis of methods for detecting interacting loci.
    Chen L; Yu G; Langefeld CD; Miller DJ; Guy RT; Raghuram J; Yuan X; Herrington DM; Wang Y
    BMC Genomics; 2011 Jul; 12():344. PubMed ID: 21729295
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exploiting Linkage Disequilibrium for Ultrahigh-Dimensional Genome-Wide Data with an Integrated Statistical Approach.
    Carlsen M; Fu G; Bushman S; Corcoran C
    Genetics; 2016 Feb; 202(2):411-26. PubMed ID: 26661113
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Performance of random forest when SNPs are in linkage disequilibrium.
    Meng YA; Yu Y; Cupples LA; Farrer LA; Lunetta KL
    BMC Bioinformatics; 2009 Mar; 10():78. PubMed ID: 19265542
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluating the ability of tree-based methods and logistic regression for the detection of SNP-SNP interaction.
    García-Magariños M; López-de-Ullibarri I; Cao R; Salas A
    Ann Hum Genet; 2009 May; 73(Pt 3):360-9. PubMed ID: 19291098
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.