These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 22851473)

  • 21. Exhaustive allelic transmission disequilibrium tests as a new approach to genome-wide association studies.
    Lin S; Chakravarti A; Cutler DJ
    Nat Genet; 2004 Nov; 36(11):1181-8. PubMed ID: 15502828
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The impact of missing and erroneous genotypes on tagging SNP selection and power of subsequent association tests.
    Liu W; Zhao W; Chase GA
    Hum Hered; 2006; 61(1):31-44. PubMed ID: 16557026
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Using tree-based methods for detection of gene-gene interactions in the presence of a polygenic signal: simulation study with application to educational attainment in the Generation Scotland Cohort Study.
    Meijsen JJ; Rammos A; Campbell A; Hayward C; Porteous DJ; Deary IJ; Marioni RE; Nicodemus KK
    Bioinformatics; 2019 Jan; 35(2):181-188. PubMed ID: 29931044
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A hierarchical Bayesian network approach for linkage disequilibrium modeling and data-dimensionality reduction prior to genome-wide association studies.
    Mourad R; Sinoquet C; Leray P
    BMC Bioinformatics; 2011 Jan; 12():16. PubMed ID: 21226914
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Informative SNP selection methods based on SNP prediction.
    He J; Zelikovsky A
    IEEE Trans Nanobioscience; 2007 Mar; 6(1):60-7. PubMed ID: 17393851
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Association tests using kernel-based measures of multi-locus genotype similarity between individuals.
    Mukhopadhyay I; Feingold E; Weeks DE; Thalamuthu A
    Genet Epidemiol; 2010 Apr; 34(3):213-21. PubMed ID: 19697357
    [TBL] [Abstract][Full Text] [Related]  

  • 27. KDSNP: A kernel-based approach to detecting high-order SNP interactions.
    Kodama K; Saigo H
    J Bioinform Comput Biol; 2016 Oct; 14(5):1644003. PubMed ID: 27806683
    [TBL] [Abstract][Full Text] [Related]  

  • 28. MegaSNPHunter: a learning approach to detect disease predisposition SNPs and high level interactions in genome wide association study.
    Wan X; Yang C; Yang Q; Xue H; Tang NL; Yu W
    BMC Bioinformatics; 2009 Jan; 10():13. PubMed ID: 19134182
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Accuracy of prediction of simulated polygenic phenotypes and their underlying quantitative trait loci genotypes using real or imputed whole-genome markers in cattle.
    Hassani S; Saatchi M; Fernando RL; Garrick DJ
    Genet Sel Evol; 2015 Dec; 47():99. PubMed ID: 26698091
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Pathway analysis by adaptive combination of P-values.
    Yu K; Li Q; Bergen AW; Pfeiffer RM; Rosenberg PS; Caporaso N; Kraft P; Chatterjee N
    Genet Epidemiol; 2009 Dec; 33(8):700-9. PubMed ID: 19333968
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Multiple SNP Set Analysis for Genome-Wide Association Studies Through Bayesian Latent Variable Selection.
    Lu ZH; Zhu H; Knickmeyer RC; Sullivan PF; Williams SN; Zou F;
    Genet Epidemiol; 2015 Dec; 39(8):664-77. PubMed ID: 26515609
    [TBL] [Abstract][Full Text] [Related]  

  • 32. SNPs selection using support vector regression and genetic algorithms in GWAS.
    de Oliveira FC; Borges CC; Almeida FN; e Silva FF; da Silva Verneque R; da Silva MV; Arbex W
    BMC Genomics; 2014; 15 Suppl 7(Suppl 7):S4. PubMed ID: 25573332
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Multi-marker-LD based genetic algorithm for tag SNP selection.
    Mouawad AE; Mansour N
    Interdiscip Sci; 2014 Dec; 6(4):303-11. PubMed ID: 25108458
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Genome-wide tagging SNPs with entropy-based Monte Carlo method.
    Liu Z; Lin S; Tan M
    J Comput Biol; 2006 Nov; 13(9):1606-14. PubMed ID: 17147483
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The relative power of SNPs and haplotype as genetic markers for association tests.
    Bader JS
    Pharmacogenomics; 2001 Feb; 2(1):11-24. PubMed ID: 11258193
    [TBL] [Abstract][Full Text] [Related]  

  • 36. On the follow-up of genome-wide association studies: an overall test for the most promising SNPs.
    Lipman PJ; Cho MH; Bakke P; Gulsvik A; Kong X; Lomas DA; Anderson W; Silverman EK; Lange C
    Genet Epidemiol; 2011 Jul; 35(5):303-9. PubMed ID: 21374717
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Increasing power of genome-wide association studies by collecting additional single-nucleotide polymorphisms.
    Kostem E; Lozano JA; Eskin E
    Genetics; 2011 Jun; 188(2):449-60. PubMed ID: 21467568
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Is it rare or common?
    Adhikari K; AlChawa T; Ludwig K; Mangold E; Laird N; Lange C
    Genet Epidemiol; 2012 Jul; 36(5):419-29. PubMed ID: 22549767
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Genome-wide prediction using Bayesian additive regression trees.
    Waldmann P
    Genet Sel Evol; 2016 Jun; 48(1):42. PubMed ID: 27286957
    [TBL] [Abstract][Full Text] [Related]  

  • 40. SNP set association analysis for familial data.
    Schifano ED; Epstein MP; Bielak LF; Jhun MA; Kardia SL; Peyser PA; Lin X
    Genet Epidemiol; 2012 Dec; 36(8):797-810. PubMed ID: 22968922
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.