BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

258 related articles for article (PubMed ID: 22852067)

  • 1. Bacillus anthracis factors for phagosomal escape.
    Tonello F; Zornetta I
    Toxins (Basel); 2012 Jul; 4(7):536-53. PubMed ID: 22852067
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Early Bacillus anthracis-macrophage interactions: intracellular survival survival and escape.
    Dixon TC; Fadl AA; Koehler TM; Swanson JA; Hanna PC
    Cell Microbiol; 2000 Dec; 2(6):453-63. PubMed ID: 11207600
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bacillus anthracis anthrolysin O and three phospholipases C are functionally redundant in a murine model of inhalation anthrax.
    Heffernan BJ; Thomason B; Herring-Palmer A; Hanna P
    FEMS Microbiol Lett; 2007 Jun; 271(1):98-105. PubMed ID: 17419764
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Stochastic Intracellular Model of Anthrax Infection With Spore Germination Heterogeneity.
    Williams B; López-García M; Gillard JJ; Laws TR; Lythe G; Carruthers J; Finnie T; Molina-París C
    Front Immunol; 2021; 12():688257. PubMed ID: 34497601
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bacillus anthracis spore movement does not require a carrier cell and is not affected by lethal toxin in human lung models.
    Booth JL; Duggan ES; Patel VI; Langer M; Wu W; Braun A; Coggeshall KM; Metcalf JP
    Microbes Infect; 2016 Oct; 18(10):615-626. PubMed ID: 27320392
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Key aspects of the molecular and cellular basis of inhalational anthrax.
    Cote CK; Welkos SL; Bozue J
    Microbes Infect; 2011 Dec; 13(14-15):1146-55. PubMed ID: 21816231
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A bivalent protein r-PB, comprising PA and BclA immunodominant regions for comprehensive protection against Bacillus anthracis.
    Majumder S; Das S; Somani V; Makam SS; Joseph KJ; Bhatnagar R
    Sci Rep; 2018 May; 8(1):7242. PubMed ID: 29740033
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The integrin Mac-1 (CR3) mediates internalization and directs Bacillus anthracis spores into professional phagocytes.
    Oliva CR; Swiecki MK; Griguer CE; Lisanby MW; Bullard DC; Turnbough CL; Kearney JF
    Proc Natl Acad Sci U S A; 2008 Jan; 105(4):1261-6. PubMed ID: 18216258
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bacillus cereus G9241 makes anthrax toxin and capsule like highly virulent B. anthracis Ames but behaves like attenuated toxigenic nonencapsulated B. anthracis Sterne in rabbits and mice.
    Wilson MK; Vergis JM; Alem F; Palmer JR; Keane-Myers AM; Brahmbhatt TN; Ventura CL; O'Brien AD
    Infect Immun; 2011 Aug; 79(8):3012-9. PubMed ID: 21576337
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [The characteristics of the interaction of Bacillus anthracis with host phagocytes in relation to the plasmid spectrum of the causative agent].
    Popov SF; Lipnitskiĭ AV; Barkov AM; Kurilov VIa
    Zh Mikrobiol Epidemiol Immunobiol; 1996; (2):13-6. PubMed ID: 8701646
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Anthrax Toxins in Context of Bacillus anthracis Spores and Spore Germination.
    Cote CK; Welkos SL
    Toxins (Basel); 2015 Aug; 7(8):3167-78. PubMed ID: 26287244
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Anthrax: early steps of the intracellular stage of infection development].
    Bakhteeva IV; Titareva GM; Kravchenko TB; Mironova RI; Noskov AN
    Mol Gen Mikrobiol Virusol; 2005; (4):3-9. PubMed ID: 16334217
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Specific intoxication in anthrax infection].
    Kolesnik VS; Tafel'shteĭn EE; Kolesnik RS; Sorkin IuI; Kalinovskiĭ AI
    Zh Mikrobiol Epidemiol Immunobiol; 1989 Sep; (9):14-8. PubMed ID: 2511710
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fate of germinated Bacillus anthracis spores in primary murine macrophages.
    Guidi-Rontani C; Levy M; Ohayon H; Mock M
    Mol Microbiol; 2001 Nov; 42(4):931-8. PubMed ID: 11737637
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differential contribution of Bacillus anthracis toxins to pathogenicity in two animal models.
    Levy H; Weiss S; Altboum Z; Schlomovitz J; Glinert I; Sittner A; Shafferman A; Kobiler D
    Infect Immun; 2012 Aug; 80(8):2623-31. PubMed ID: 22585968
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Molecular aspects of anthrax pathogenesis].
    Noskov AN
    Zh Mikrobiol Epidemiol Immunobiol; 2014; (4):92-101. PubMed ID: 25286538
    [TBL] [Abstract][Full Text] [Related]  

  • 17. New aspects of the infection mechanisms of Bacillus anthracis.
    Zakowska D; Bartoszcze M; Niemcewicz M; Bielawska-Drózd A; Kocik J
    Ann Agric Environ Med; 2012; 19(4):613-8. PubMed ID: 23311776
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Monoclonal antibody against the poly-gamma-D-glutamic acid capsule of Bacillus anthracis protects mice from enhanced lethal toxin activity due to capsule and anthrax spore challenge.
    Jang J; Cho M; Lee HR; Cha K; Chun JH; Hong KJ; Park J; Rhie GE
    Biochim Biophys Acta; 2013 Mar; 1830(3):2804-12. PubMed ID: 23201204
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Anthrax toxin receptor 2 mediates Bacillus anthracis killing of macrophages following spore challenge.
    Banks DJ; Barnajian M; Maldonado-Arocho FJ; Sanchez AM; Bradley KA
    Cell Microbiol; 2005 Aug; 7(8):1173-85. PubMed ID: 16008584
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Early interactions between fully virulent Bacillus anthracis and macrophages that influence the balance between spore clearance and development of a lethal infection.
    Cote CK; DiMezzo TL; Banks DJ; France B; Bradley KA; Welkos SL
    Microbes Infect; 2008 May; 10(6):613-9. PubMed ID: 18467145
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.