BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 22852312)

  • 1. Effect of single-walled carbon nanotubes on Bacillus anthracis cell growth, sporulation, and spore germination.
    Aferchich K; Lilly M; Yang L
    J Nanosci Nanotechnol; 2012 May; 12(5):3821-30. PubMed ID: 22852312
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inhibitory effects of single-walled carbon nanotubes on biofilm formation from Bacillus anthracis spores.
    Dong X; Yang L
    Biofouling; 2014; 30(10):1165-74. PubMed ID: 25389559
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inactivation of Bacillus anthracis spores by single-walled carbon nanotubes coupled with oxidizing antimicrobial chemicals.
    Lilly M; Dong X; McCoy E; Yang L
    Environ Sci Technol; 2012 Dec; 46(24):13417-24. PubMed ID: 23167544
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dual effects of single-walled carbon nanotubes coupled with near-infrared radiation on Bacillus anthracis spores: inactivates spores and stimulates the germination of surviving spores.
    Dong X; Tang Y; Wu M; Vlahovic B; Yang L
    J Biol Eng; 2013; 7():19. PubMed ID: 23965258
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inhibitory effects of nisin-coated multi-walled carbon nanotube sheet on biofilm formation from Bacillus anthracis spores.
    Dong X; McCoy E; Zhang M; Yang L
    J Environ Sci (China); 2014 Dec; 26(12):2526-34. PubMed ID: 25499501
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interactions of antimicrobial peptide chrysophsin-3 with Bacillus anthracis in sporulated, germinated, and vegetative states.
    Pinzón-Arango PA; Nagarajan R; Camesano TA
    J Phys Chem B; 2013 May; 117(21):6364-72. PubMed ID: 23631815
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Antimicrobial effects of interferon-inducible CXC chemokines against Bacillus anthracis spores and bacilli.
    Crawford MA; Zhu Y; Green CS; Burdick MD; Sanz P; Alem F; O'Brien AD; Mehrad B; Strieter RM; Hughes MA
    Infect Immun; 2009 Apr; 77(4):1664-78. PubMed ID: 19179419
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of L-alanine and inosine germinants on the elasticity of Bacillus anthracis spores.
    Pinzón-Arango PA; Nagarajan R; Camesano TA
    Langmuir; 2010 May; 26(9):6535-41. PubMed ID: 20095533
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Antimicrobial activity of single-walled carbon nanotubes: length effect.
    Yang C; Mamouni J; Tang Y; Yang L
    Langmuir; 2010 Oct; 26(20):16013-9. PubMed ID: 20849142
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A microtiter fluorometric assay to detect the germination of Bacillus anthracis spores and the germination inhibitory effects of antibodies.
    Welkos SL; Cote CK; Rea KM; Gibbs PH
    J Microbiol Methods; 2004 Feb; 56(2):253-65. PubMed ID: 14744454
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inactivation of Bacillus anthracis spores by liquid biocides in the presence of food residue.
    Hilgren J; Swanson KM; Diez-Gonzalez F; Cords B
    Appl Environ Microbiol; 2007 Oct; 73(20):6370-7. PubMed ID: 17720823
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Germination and persistence of Bacillus anthracis and Bacillus thuringiensis in soil microcosms.
    Bishop AH
    J Appl Microbiol; 2014 Nov; 117(5):1274-82. PubMed ID: 25099131
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Unique aggregation of anthrax (Bacillus anthracis) spores by sugar-coated single-walled carbon nanotubes.
    Wang H; Gu L; Lin Y; Lu F; Meziani MJ; Luo PG; Wang W; Cao L; Sun YP
    J Am Chem Soc; 2006 Oct; 128(41):13364-5. PubMed ID: 17031942
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Properties of Bacillus anthracis spores prepared under various environmental conditions.
    Baweja RB; Zaman MS; Mattoo AR; Sharma K; Tripathi V; Aggarwal A; Dubey GP; Kurupati RK; Ganguli M; Chaudhury NK; Sen S; Das TK; Gade WN; Singh Y
    Arch Microbiol; 2008 Jan; 189(1):71-9. PubMed ID: 17713759
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sensing and inactivation of Bacillus anthracis Sterne by polymer-bromine complexes.
    D'Angelo PA; Bromberg L; Hatton TA; Wilusz E
    Appl Microbiol Biotechnol; 2016 Aug; 100(15):6847-6857. PubMed ID: 27087522
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inhibition of Bacillus anthracis spore outgrowth by nisin.
    Gut IM; Prouty AM; Ballard JD; van der Donk WA; Blanke SR
    Antimicrob Agents Chemother; 2008 Dec; 52(12):4281-8. PubMed ID: 18809941
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inactivation of bacterial pathogens by carbon nanotubes in suspensions.
    Arias LR; Yang L
    Langmuir; 2009 Mar; 25(5):3003-12. PubMed ID: 19437709
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A simple decontamination approach using hydrogen peroxide vapour for Bacillus anthracis spore inactivation.
    Wood JP; Calfee MW; Clayton M; Griffin-Gatchalian N; Touati A; Ryan S; Mickelsen L; Smith L; Rastogi V
    J Appl Microbiol; 2016 Dec; 121(6):1603-1615. PubMed ID: 27569380
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impact of spores on the comparative efficacies of five antibiotics for treatment of Bacillus anthracis in an in vitro hollow fiber pharmacodynamic model.
    Louie A; VanScoy BD; Brown DL; Kulawy RW; Heine HS; Drusano GL
    Antimicrob Agents Chemother; 2012 Mar; 56(3):1229-39. PubMed ID: 22155821
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Supercritical carbon dioxide and hydrogen peroxide cause mild changes in spore structures associated with high killing rate of Bacillus anthracis.
    Zhang J; Dalal N; Matthews MA; Waller LN; Saunders C; Fox KF; Fox A
    J Microbiol Methods; 2007 Sep; 70(3):442-51. PubMed ID: 17628729
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.