These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
235 related articles for article (PubMed ID: 22852479)
1. Evaluating the potential of polyester nanoparticles for per oral delivery of amphotericin B in treating visceral leishmaniasis. Italia JL; Kumar MN; Carter KC J Biomed Nanotechnol; 2012 Aug; 8(4):695-702. PubMed ID: 22852479 [TBL] [Abstract][Full Text] [Related]
3. Bioinspired Calcium Phosphate Nanoparticles Featuring as Efficient Carrier and Prompter for Macrophage Intervention in Experimental Leishmaniasis. Chaurasia M; Singh PK; Jaiswal AK; Kumar A; Pawar VK; Dube A; Paliwal SK; Chourasia MK Pharm Res; 2016 Nov; 33(11):2617-29. PubMed ID: 27401407 [TBL] [Abstract][Full Text] [Related]
4. Development of targeted 1,2-diacyl-sn-glycero-3-phospho-l-serine-coated gelatin nanoparticles loaded with amphotericin B for improved in vitro and in vivo effect in leishmaniasis. Khatik R; Dwivedi P; Khare P; Kansal S; Dube A; Mishra PR; Dwivedi AK Expert Opin Drug Deliv; 2014 May; 11(5):633-46. PubMed ID: 24606222 [TBL] [Abstract][Full Text] [Related]
5. Antileishmanial efficacy of amphotericin B bearing emulsomes against experimental visceral leishmaniasis. Gupta S; Dube A; Vyas SP J Drug Target; 2007 Jul; 15(6):437-44. PubMed ID: 17613662 [TBL] [Abstract][Full Text] [Related]
6. Exploitation of lectinized lipo-polymerosome encapsulated Amphotericin B to target macrophages for effective chemotherapy of visceral leishmaniasis. Gupta PK; Asthana S; Jaiswal AK; Kumar V; Verma AK; Shukla P; Dwivedi P; Dube A; Mishra PR Bioconjug Chem; 2014 Jun; 25(6):1091-102. PubMed ID: 24842628 [TBL] [Abstract][Full Text] [Related]
7. Targeted killing of Leishmania donovani in vivo and in vitro with amphotericin B attached to functionalized carbon nanotubes. Prajapati VK; Awasthi K; Gautam S; Yadav TP; Rai M; Srivastava ON; Sundar S J Antimicrob Chemother; 2011 Apr; 66(4):874-9. PubMed ID: 21393222 [TBL] [Abstract][Full Text] [Related]
8. Targeted chemotherapy of visceral leishmaniasis by lactoferrin-appended amphotericin B-loaded nanoreservoir: in vitro and in vivo studies. Asthana S; Gupta PK; Jaiswal AK; Dube A; Chourasia MK Nanomedicine (Lond); 2015; 10(7):1093-109. PubMed ID: 25929567 [TBL] [Abstract][Full Text] [Related]
9. Chitosan coated PluronicF127 micelles for effective delivery of Amphotericin B in experimental visceral leishmaniasis. Singh PK; Pawar VK; Jaiswal AK; Singh Y; Srikanth CH; Chaurasia M; Bora HK; Raval K; Meher JG; Gayen JR; Dube A; Chourasia MK Int J Biol Macromol; 2017 Dec; 105(Pt 1):1220-1231. PubMed ID: 28780414 [TBL] [Abstract][Full Text] [Related]
10. Nanonization increases the antileishmanial efficacy of amphotericin B: an ex vivo approach. Manandhar KD; Yadav TP; Prajapati VK; Basukala O; Aganja RP; Dude A; Shrivastav ON; Sundar S Adv Exp Med Biol; 2014; 808():77-91. PubMed ID: 24595612 [TBL] [Abstract][Full Text] [Related]
11. Amphotericin B-loaded nanoparticles for local treatment of cutaneous leishmaniasis. Abu Ammar A; Nasereddin A; Ereqat S; Dan-Goor M; Jaffe CL; Zussman E; Abdeen Z Drug Deliv Transl Res; 2019 Feb; 9(1):76-84. PubMed ID: 30484256 [TBL] [Abstract][Full Text] [Related]
12. Characterization and evaluation of amine-modified graphene amphotericin B for the treatment of visceral leishmaniasis: in vivo and in vitro studies. Mudavath SL; Talat M; Rai M; Srivastava ON; Sundar S Drug Des Devel Ther; 2014; 8():1235-47. PubMed ID: 25214767 [TBL] [Abstract][Full Text] [Related]
13. A new nanoemulsion formulation improves antileishmanial activity and reduces toxicity of amphotericin B. Santos DCMD; de Souza MLS; Teixeira EM; Alves LL; Vilela JMC; Andrade M; Carvalho MDG; Fernandes AP; Ferreira LAM; Aguiar MMG J Drug Target; 2018 Apr; 26(4):357-364. PubMed ID: 29041824 [TBL] [Abstract][Full Text] [Related]
14. An oral formulation of amphotericin B attached to functionalized carbon nanotubes is an effective treatment for experimental visceral leishmaniasis. Prajapati VK; Awasthi K; Yadav TP; Rai M; Srivastava ON; Sundar S J Infect Dis; 2012 Jan; 205(2):333-6. PubMed ID: 22158723 [TBL] [Abstract][Full Text] [Related]
15. Liposomal amphotericin B in drug-resistant visceral leishmaniasis. Davidson RN; Croft SL; Scott A; Maini M; Moody AH; Bryceson AD Lancet; 1991 May; 337(8749):1061-2. PubMed ID: 1673494 [TBL] [Abstract][Full Text] [Related]
16. Study the effects of PLGA-PEG encapsulated amphotericin B nanoparticle drug delivery system against Leishmania donovani. Kumar R; Sahoo GC; Pandey K; Das V; Das P Drug Deliv; 2015 May; 22(3):383-8. PubMed ID: 24601828 [TBL] [Abstract][Full Text] [Related]
17. Supplementation of host response by targeting nitric oxide to the macrophage cytosol is efficacious in the hamster model of visceral leishmaniasis and adds to efficacy of amphotericin B. Pandya S; Verma RK; Khare P; Tiwari B; Srinivasarao DA; Dube A; Goyal N; Misra A Int J Parasitol Drugs Drug Resist; 2016 Aug; 6(2):125-32. PubMed ID: 27183429 [TBL] [Abstract][Full Text] [Related]
18. Modified solid lipid nanoparticles encapsulated with Amphotericin B and Paromomycin: an effective oral combination against experimental murine visceral leishmaniasis. Parvez S; Yadagiri G; Gedda MR; Singh A; Singh OP; Verma A; Sundar S; Mudavath SL Sci Rep; 2020 Jul; 10(1):12243. PubMed ID: 32699361 [TBL] [Abstract][Full Text] [Related]
19. Design and antileishmanial activity of amphotericin B-loaded stable ionic amphiphile biovector formulations. Loiseau PM; Imbertie L; Bories C; Betbeder D; De Miguel I Antimicrob Agents Chemother; 2002 May; 46(5):1597-601. PubMed ID: 11959611 [TBL] [Abstract][Full Text] [Related]
20. Development of mannose-anchored thiolated amphotericin B nanocarriers for treatment of visceral leishmaniasis. Shahnaz G; Edagwa BJ; McMillan J; Akhtar S; Raza A; Qureshi NA; Yasinzai M; Gendelman HE Nanomedicine (Lond); 2017 Jan; 12(2):99-115. PubMed ID: 27879160 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]