These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 22852650)

  • 1. Micellization and relaxation in solution with spherical micelles via the discrete Becker-Döring equations at different total surfactant concentrations.
    Babintsev I; Adzhemyan L; Shchekin A
    J Chem Phys; 2012 Jul; 137(4):044902. PubMed ID: 22852650
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinetics of micellisation and relaxation of cylindrical micelles described by the difference Becker-Döring equation.
    Babintsev IA; Adzhemyan LTs; Shchekin AK
    Soft Matter; 2014 Apr; 10(15):2619-31. PubMed ID: 24647594
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multi-scale times and modes of fast and slow relaxation in solutions with coexisting spherical and cylindrical micelles according to the difference Becker-Döring kinetic equations.
    Babintsev IA; Adzhemyan LTs; Shchekin AK
    J Chem Phys; 2014 Aug; 141(6):064901. PubMed ID: 25134593
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Full-time kinetics of self-assembly and disassembly in micellar solution via the generalized Smoluchowski equation with fusion and fission of surfactant aggregates.
    Shchekin AK; Babintsev IA; Adzhemyan LT
    J Chem Phys; 2016 Nov; 145(17):174105. PubMed ID: 27825237
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Boltzmann distributions and slow relaxation in systems with spherical and cylindrical micelles.
    Kuni FM; Shchekin AK; Rusanov AI; Grinin AP
    Langmuir; 2006 Feb; 22(4):1534-43. PubMed ID: 16460071
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mass transport in micellar surfactant solutions: 1. Relaxation of micelle concentration, aggregation number and polydispersity.
    Danov KD; Kralchevsky PA; Denkov ND; Ananthapadmanabhan KP; Lips A
    Adv Colloid Interface Sci; 2006 Jan; 119(1):1-16. PubMed ID: 16303116
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Relaxation times and modes of disturbed aggregate distribution in micellar solutions with fusion and fission of micelles.
    Zakharov AI; Adzhemyan LTs; Shchekin AK
    J Chem Phys; 2015 Sep; 143(12):124902. PubMed ID: 26429036
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On the predictions and limitations of the Becker-Döring model for reaction kinetics in micellar surfactant solutions.
    Griffiths IM; Bain CD; Breward CJ; Colegate DM; Howell PD; Waters SL
    J Colloid Interface Sci; 2011 Aug; 360(2):662-71. PubMed ID: 21571292
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mass transport in micellar surfactant solutions: 2. Theoretical modeling of adsorption at a quiescent interface.
    Danov KD; Kralchevsky PA; Denkov ND; Ananthapadmanabhan KP; Lips A
    Adv Colloid Interface Sci; 2006 Jan; 119(1):17-33. PubMed ID: 16309620
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Importance of micellar kinetics in relation to technological processes.
    Patist A; Kanicky JR; Shukla PK; Shah DO
    J Colloid Interface Sci; 2002 Jan; 245(1):1-15. PubMed ID: 16290329
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nonlinear kinetics of fast relaxation in solutions with short and lengthy micelles.
    Kshevetskiy MS; Shchekin AK
    J Chem Phys; 2009 Aug; 131(7):074114. PubMed ID: 19708739
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adsorption of nonionic surfactants on cellulose surfaces: adsorbed amounts and kinetics.
    Torn LH; Koopal LK; de Keizer A; Lyklema J
    Langmuir; 2005 Aug; 21(17):7768-75. PubMed ID: 16089382
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A multiscale model for kinetics of formation and disintegration of spherical micelles.
    Mohan G; Kopelevich DI
    J Chem Phys; 2008 Jan; 128(4):044905. PubMed ID: 18247998
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Monomer exchange kinetics, radial diffusion, and hydrocarbon chain isomerization of sodium dodecylsulfate micelles in water.
    Polacek R; Kaatze U
    J Phys Chem B; 2007 Feb; 111(7):1625-31. PubMed ID: 17261063
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of stiffness on the micellization behavior of model H4T4 surfactant chains.
    Firetto V; Floriano MA; Panagiotopoulos AZ
    Langmuir; 2006 Jul; 22(15):6514-22. PubMed ID: 16830992
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Complementary use of simulations and molecular-thermodynamic theory to model micellization.
    Stephenson BC; Beers K; Blankschtein D
    Langmuir; 2006 Feb; 22(4):1500-13. PubMed ID: 16460068
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Three eras of micellization.
    Neu JC; Cañizo JA; Bonilla LL
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Dec; 66(6 Pt 1):061406. PubMed ID: 12513284
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kinetics of micelle formation and concentration fluctuations in solutions of short-chain surfactants.
    Kaatze U
    J Phys Chem B; 2011 Sep; 115(35):10470-7. PubMed ID: 21766842
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Critical evaluation of micellization behavior of nonionic surfactant MEGA 10 in comparison with ionic surfactant tetradecyltriphenylphosphonium bromide studied by microcalorimetric method in aqueous medium.
    Prasad M; Chakraborty I; Rakshit AK; Moulik SP
    J Phys Chem B; 2006 May; 110(20):9815-21. PubMed ID: 16706433
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Aggregation work at polydisperse micellization: ideal solution and "dressed micelle" models comparing to molecular dynamics simulations.
    Burov SV; Shchekin AK
    J Chem Phys; 2010 Dec; 133(24):244109. PubMed ID: 21197978
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.