These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 22852682)

  • 1. Design and capabilities of an experimental setup based on magnetron sputtering for formation and deposition of size-selected metal clusters on ultra-clean surfaces.
    Hartmann H; Popok VN; Barke I; von Oeynhausen V; Meiwes-Broer KH
    Rev Sci Instrum; 2012 Jul; 83(7):073304. PubMed ID: 22852682
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Performance of a size-selected nanocluster deposition facility and in situ characterization of grown films by x-ray photoelectron spectroscopy.
    Mondal S; Bhattacharyya SR
    Rev Sci Instrum; 2014 Jun; 85(6):065109. PubMed ID: 24985854
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deposition of size-selected metal clusters generated by magnetron sputtering and gas condensation: a progress review.
    Xirouchaki C; Palmer RE
    Philos Trans A Math Phys Eng Sci; 2004 Jan; 362(1814):117-24. PubMed ID: 15306279
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sub-2 nm size and density tunable platinum nanoparticles using room temperature tilted-target sputtering.
    Ramalingam B; Mukherjee S; Mathai CJ; Gangopadhyay K; Gangopadhyay S
    Nanotechnology; 2013 May; 24(20):205602. PubMed ID: 23609435
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Combination of transmission electron and atomic force microscopy techniques to determine volume equivalent diameter of submicrometer particles.
    Tumolva L; Park JY; Park K
    Microsc Res Tech; 2012 Apr; 75(4):505-12. PubMed ID: 21919129
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Soft landing of bare nanoparticles with controlled size, composition, and morphology.
    Johnson GE; Colby R; Laskin J
    Nanoscale; 2015 Feb; 7(8):3491-503. PubMed ID: 25626391
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Band structure quantization in nanometer sized ZnO clusters.
    Schouteden K; Zeng YJ; Lauwaet K; Romero CP; Goris B; Bals S; Van Tendeloo G; Lievens P; Van Haesendonck C
    Nanoscale; 2013 May; 5(9):3757-63. PubMed ID: 23515535
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Size-selected TiO₂ nanocluster catalysts for efficient photoelectrochemical water splitting.
    Srivastava S; Thomas JP; Rahman MA; Abd-Ellah M; Mohapatra M; Pradhan D; Heinig NF; Leung KT
    ACS Nano; 2014 Nov; 8(11):11891-8. PubMed ID: 25365773
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Laser ablation source for formation and deposition of size-selected metal clusters.
    Vucković S; Svanqvist M; Popok VN
    Rev Sci Instrum; 2008 Jul; 79(7):073303. PubMed ID: 18681696
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Landing of size-selected Agn+ clusters on single crystal TiO2 (110)-(1x1) surfaces at room temperature.
    Benz L; Tong X; Kemper P; Lilach Y; Kolmakov A; Metiu H; Bowers MT; Buratto SK
    J Chem Phys; 2005 Feb; 122(8):81102. PubMed ID: 15836012
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High resolution electron microscopy of Ag-clusters in crystalline and non-crystalline morphologies grown inside superfluid helium nanodroplets.
    Volk A; Thaler P; Koch M; Fisslthaler E; Grogger W; Ernst WE
    J Chem Phys; 2013 Jun; 138(21):214312. PubMed ID: 23758376
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The structure and optical properties of ZnO nanocrystals embedded in SiO2 fabricated by radio-frequency sputtering.
    Mayer G; Fonin M; Rüdiger U; Schneider R; Gerthsen D; Janssen N; Bratschitsch R
    Nanotechnology; 2009 Feb; 20(7):075601. PubMed ID: 19417422
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surface deposition and imaging of large Ag clusters formed in He droplets.
    Loginov E; Gomez LF; Vilesov AF
    J Phys Chem A; 2011 Jun; 115(25):7199-204. PubMed ID: 21486053
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Predicting the shape and structure of face-centered cubic gold nanocrystals smaller than 3 nm.
    Barnard AS; Curtiss LA
    Chemphyschem; 2006 Jul; 7(7):1544-53. PubMed ID: 16755641
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A dual-deposition setup for fabricating nanoparticle-thin film hybrid structures.
    Kala S; Mehta BR; Kruis FE
    Rev Sci Instrum; 2008 Jan; 79(1):013902. PubMed ID: 18248045
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of metal nanocluster ion source based on dc magnetron plasma sputtering at room temperature.
    Majumdar A; Köpp D; Ganeva M; Datta D; Bhattacharyya S; Hippler R
    Rev Sci Instrum; 2009 Sep; 80(9):095103. PubMed ID: 19791960
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An efficient strategy to detect latent fingermarks on metallic surfaces.
    Ramos AS; Vieira MT
    Forensic Sci Int; 2012 Apr; 217(1-3):196-203. PubMed ID: 22115722
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Field evaluation of nanofilm detectors for measuring acidic particles in indoor and outdoor air.
    Cohen BS; Heikkinen MS; Hazi Y; Gao H; Peters P; Lippmann M
    Res Rep Health Eff Inst; 2004 Sep; (121):1-35; discussion 37-46. PubMed ID: 15553489
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrospray ion beam deposition of clusters and biomolecules.
    Rauschenbach S; Stadler FL; Lunedei E; Malinowski N; Koltsov S; Costantini G; Kern K
    Small; 2006 Apr; 2(4):540-7. PubMed ID: 17193083
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thin film and interface properties during ZnO deposition onto high-barrier hybrid/PET flexible substrates.
    Koidis C; Logothetidis S; Laskarakis A; Tsiaoussis I; Frangis N
    Micron; 2009 Jan; 40(1):130-4. PubMed ID: 18406620
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.