These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 22852708)

  • 1. 10 ps resolution, 160 ns full scale range and less than 1.5% differential non-linearity time-to-digital converter module for high performance timing measurements.
    Markovic B; Tamborini D; Villa F; Tisa S; Tosi A; Zappa F
    Rev Sci Instrum; 2012 Jul; 83(7):074703. PubMed ID: 22852708
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 8-Channel acquisition system for Time-Correlated Single-Photon Counting.
    Antonioli S; Miari L; Cuccato A; Crotti M; Rech I; Ghioni M
    Rev Sci Instrum; 2013 Jun; 84(6):064705. PubMed ID: 23822364
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multichannel low power time-to-digital converter card with 21 ps precision and full scale range up to 10 μs.
    Tamborini D; Portaluppi D; Villa F; Tisa S; Tosi A
    Rev Sci Instrum; 2014 Nov; 85(11):114703. PubMed ID: 25430129
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dual-Phase Tapped-Delay-Line Time-to-Digital Converter With On-the-Fly Calibration Implemented in 40 nm FPGA.
    Won JY; Kwon SI; Yoon HS; Ko GB; Son JW; Lee JS
    IEEE Trans Biomed Circuits Syst; 2016 Feb; 10(1):231-42. PubMed ID: 25775497
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Scalable time-correlated photon counting system with multiple independent input channels.
    Wahl M; Rahn HJ; Röhlicke T; Kell G; Nettels D; Hillger F; Schuler B; Erdmann R
    Rev Sci Instrum; 2008 Dec; 79(12):123113. PubMed ID: 19123551
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Performance trade-offs in single-photon avalanche diode miniaturization.
    Finkelstein H; Hsu MJ; Zlatanovic S; Esener S
    Rev Sci Instrum; 2007 Oct; 78(10):103103. PubMed ID: 17979402
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of a control system for pulsed-electron spin resonance spectrometers.
    Mizuta Y; Kazama S; Ohba Y; Sakai N; Yamamoto Y; Shimoyama Y
    Rev Sci Instrum; 2008 Apr; 79(4):044705. PubMed ID: 18447542
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Self-suppression of reset induced triggering in picosecond SPAD timing circuits.
    Rech I; Resnati D; Gulinatti A; Ghioni M; Cova S
    Rev Sci Instrum; 2007 Aug; 78(8):086112. PubMed ID: 17764372
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fast-gated single-photon counting technique widens dynamic range and speeds up acquisition time in time-resolved measurements.
    Tosi A; Dalla Mora A; Zappa F; Gulinatti A; Contini D; Pifferi A; Spinelli L; Torricelli A; Cubeddu R
    Opt Express; 2011 May; 19(11):10735-46. PubMed ID: 21643330
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Monolithic time to amplitude converter for time correlated single photon counting.
    Resnati D; Rech I; Gallivanoni A; Ghioni M
    Rev Sci Instrum; 2009 Aug; 80(8):086102. PubMed ID: 19725686
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Operation of silicon single photon avalanche diodes at cryogenic temperature.
    Rech I; Labanca I; Armellini G; Gulinatti A; Ghioni M; Cova S
    Rev Sci Instrum; 2007 Jun; 78(6):063105. PubMed ID: 17614603
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Development of a digital EEG signal acquiring system based on virtual instrument technology].
    Ying J; Chen GF; He SL
    Zhongguo Yi Liao Qi Xie Za Zhi; 2009 Sep; 33(5):332-5. PubMed ID: 20073237
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Real-time fluorescence lifetime imaging system with a 32 x 32 0.13microm CMOS low dark-count single-photon avalanche diode array.
    Li DU; Arlt J; Richardson J; Walker R; Buts A; Stoppa D; Charbon E; Henderson R
    Opt Express; 2010 May; 18(10):10257-69. PubMed ID: 20588879
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of a Time-Resolved Diffuse Optical Spectroscopy Prototype Using Low-Cost, Compact Single Photon Avalanche Detectors for Tissue Optics Applications.
    Alayed M; Palubiak DP; Deen MJ
    Sensors (Basel); 2018 Oct; 18(11):. PubMed ID: 30380688
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Digital-signal-processor-based dynamic imaging system for optical tomography.
    Lasker JM; Masciotti JM; Schoenecker M; Schmitz CH; Hielscher AH
    Rev Sci Instrum; 2007 Aug; 78(8):083706. PubMed ID: 17764328
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 256 × 2 SPAD line sensor for time resolved fluorescence spectroscopy.
    Krstajić N; Levitt J; Poland S; Ameer-Beg S; Henderson R
    Opt Express; 2015 Mar; 23(5):5653-69. PubMed ID: 25836796
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A new realization of time-to-digital converters based on FPGA internal routing resources.
    Wang H; Zhang M; Yao Q
    IEEE Trans Ultrason Ferroelectr Freq Control; 2013 Sep; 60(9):1787-95. PubMed ID: 24658711
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A positron emission tomograph based on LSO-APD modules with a sampling ADC read-out system for a students' advanced laboratory course.
    Schneider FR; Mann AB; Konorov I; Delso G; Paul S; Ziegler SI
    Z Med Phys; 2012 Jun; 22(2):143-9. PubMed ID: 22019183
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of Geiger-mode APDs for PET block detector designs.
    Kolb A; Lorenz E; Judenhofer MS; Renker D; Lankes K; Pichler BJ
    Phys Med Biol; 2010 Apr; 55(7):1815-32. PubMed ID: 20208095
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Real-time digital signal processing-based optical coherence tomography and Doppler optical coherence tomography.
    Schaefer AW; Reynolds JJ; Marks DL; Boppart SA
    IEEE Trans Biomed Eng; 2004 Jan; 51(1):186-90. PubMed ID: 14723509
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.