These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

257 related articles for article (PubMed ID: 22852823)

  • 1. Upregulation of transmitter release probability improves a conversion of synaptic analogue signals into neuronal digital spikes.
    Yu J; Qian H; Wang JH
    Mol Brain; 2012 Aug; 5():26. PubMed ID: 22852823
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gain and fidelity of transmission patterns at cortical excitatory unitary synapses improve spike encoding.
    Wang JH; Wei J; Chen X; Yu J; Chen N; Shi J
    J Cell Sci; 2008 Sep; 121(Pt 17):2951-60. PubMed ID: 18697836
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synaptic structural complexity as a factor enhancing probability of calcium-mediated transmitter release.
    Cooper RL; Winslow JL; Govind CK; Atwood HL
    J Neurophysiol; 1996 Jun; 75(6):2451-66. PubMed ID: 8793756
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An algorithm for modifying neurotransmitter release probability based on pre- and postsynaptic spike timing.
    Senn W; Markram H; Tsodyks M
    Neural Comput; 2001 Jan; 13(1):35-67. PubMed ID: 11177427
    [TBL] [Abstract][Full Text] [Related]  

  • 5. LKB1 Regulates Mitochondria-Dependent Presynaptic Calcium Clearance and Neurotransmitter Release Properties at Excitatory Synapses along Cortical Axons.
    Kwon SK; Sando R; Lewis TL; Hirabayashi Y; Maximov A; Polleux F
    PLoS Biol; 2016 Jul; 14(7):e1002516. PubMed ID: 27429220
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Induction of synapse formation by de novo neurotransmitter synthesis.
    Burlingham SR; Wong NF; Peterkin L; Lubow L; Dos Santos Passos C; Benner O; Ghebrial M; Cast TP; Xu-Friedman MA; Südhof TC; Chanda S
    Nat Commun; 2022 Jun; 13(1):3060. PubMed ID: 35650274
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Presynaptic Ca2+-activated K+ channels in glutamatergic hippocampal terminals and their role in spike repolarization and regulation of transmitter release.
    Hu H; Shao LR; Chavoshy S; Gu N; Trieb M; Behrens R; Laake P; Pongs O; Knaus HG; Ottersen OP; Storm JF
    J Neurosci; 2001 Dec; 21(24):9585-97. PubMed ID: 11739569
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantal glutamate release is essential for reliable neuronal encodings in cerebral networks.
    Yu J; Qian H; Chen N; Wang JH
    PLoS One; 2011; 6(9):e25219. PubMed ID: 21949885
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Calcium influx-independent depression of transmitter release by 5-HT at lamprey spinal cord synapses.
    Takahashi M; Freed R; Blackmer T; Alford S
    J Physiol; 2001 Apr; 532(Pt 2):323-36. PubMed ID: 11306653
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ca2+-dependent mechanisms of presynaptic control at central synapses.
    Rusakov DA
    Neuroscientist; 2006 Aug; 12(4):317-26. PubMed ID: 16840708
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neurotransmitter Release Can Be Stabilized by a Mechanism That Prevents Voltage Changes Near the End of Action Potentials from Affecting Calcium Currents.
    Clarke SG; Scarnati MS; Paradiso KG
    J Neurosci; 2016 Nov; 36(45):11559-11572. PubMed ID: 27911759
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Facilitation at single synapses probed with optical quantal analysis.
    Oertner TG; Sabatini BL; Nimchinsky EA; Svoboda K
    Nat Neurosci; 2002 Jul; 5(7):657-64. PubMed ID: 12055631
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Developmental transformation of the release modality at the calyx of Held synapse.
    Fedchyshyn MJ; Wang LY
    J Neurosci; 2005 Apr; 25(16):4131-40. PubMed ID: 15843616
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fluorescence lifetime imaging reveals regulation of presynaptic Ca
    Tyurikova O; Zheng K; Nicholson E; Timofeeva Y; Semyanov A; Volynski KE; Rusakov DA
    J Neurochem; 2021 Jan; 156(1):48-58. PubMed ID: 32418206
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transmitter release modulation by intracellular Ca2+ buffers in facilitating and depressing nerve terminals of pyramidal cells in layer 2/3 of the rat neocortex indicates a target cell-specific difference in presynaptic calcium dynamics.
    Rozov A; Burnashev N; Sakmann B; Neher E
    J Physiol; 2001 Mar; 531(Pt 3):807-26. PubMed ID: 11251060
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Depletion of calcium in the synaptic cleft of a calyx-type synapse in the rat brainstem.
    Borst JG; Sakmann B
    J Physiol; 1999 Nov; 521 Pt 1(Pt 1):123-33. PubMed ID: 10562339
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Control of synaptic strength and timing by the release-site Ca2+ signal.
    Bollmann JH; Sakmann B
    Nat Neurosci; 2005 Apr; 8(4):426-34. PubMed ID: 15750590
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Graded synaptic transmission between identified spiking neurons.
    Graubard K; Raper JA; Hartline DK
    J Neurophysiol; 1983 Aug; 50(2):508-21. PubMed ID: 6136554
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spontaneous transmitter release recruits postsynaptic mechanisms of long-term and intermediate-term facilitation in Aplysia.
    Jin I; Udo H; Rayman JB; Puthanveettil S; Kandel ER; Hawkins RD
    Proc Natl Acad Sci U S A; 2012 Jun; 109(23):9137-42. PubMed ID: 22619333
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A simple model of transmitter release and facilitation.
    Bertram R
    Neural Comput; 1997 Apr; 9(3):515-23. PubMed ID: 9097471
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.