BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 22852861)

  • 21. Evidence for the Formation of 1,2-Dioxetane as a High-Energy Intermediate and Possible Chemiexcitation Pathways in the Chemiluminescence of Lophine Peroxides.
    Boaro A; Reis RA; Silva CS; Melo DU; Pinto AGGC; Bartoloni FH
    J Org Chem; 2021 May; 86(9):6633-6647. PubMed ID: 33876635
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Conical Intersection in Chemiluminescence of Cyclic Peroxides.
    Yue L; Liu YJ
    J Phys Chem Lett; 2022 Nov; 13(46):10671-10687. PubMed ID: 36354365
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Chemi- and Bioluminescence of Cyclic Peroxides.
    Vacher M; Fdez Galván I; Ding BW; Schramm S; Berraud-Pache R; Naumov P; Ferré N; Liu YJ; Navizet I; Roca-Sanjuán D; Baader WJ; Lindh R
    Chem Rev; 2018 Aug; 118(15):6927-6974. PubMed ID: 29493234
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Theoretical modulation of singlet/triplet chemiexcitation of chemiluminescent imidazopyrazinone dioxetanone via C
    Pinto da Silva L; Magalhães CM; Crista DMA; Esteves da Silva JCG
    Photochem Photobiol Sci; 2017 Jun; 16(6):897-907. PubMed ID: 28430271
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Theoretical study of the amazing firefly bioluminescence: the formation and structures of the light emitters.
    Orlova G; Goddard JD; Brovko LY
    J Am Chem Soc; 2003 Jun; 125(23):6962-71. PubMed ID: 12783549
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Decomposition reaction of dioxetanone in firefly bioluminescence by computer experiment.
    Wada N; Sakai H
    J Biol Phys; 2005 Dec; 31(3-4):403-12. PubMed ID: 23345906
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Tuning the Intramolecular Chemiexcitation of Neutral Dioxetanones by Interaction with Ionic Species.
    Magalhães CM; Esteves da Silva JCG; Pinto da Silva L
    Molecules; 2022 Jun; 27(12):. PubMed ID: 35744984
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The Molecular Basis of Organic Chemiluminescence.
    Cabello MC; Bartoloni FH; Bastos EL; Baader WJ
    Biosensors (Basel); 2023 Apr; 13(4):. PubMed ID: 37185527
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Kinetic studies on the peroxyoxalate chemiluminescence reaction: determination of the cyclization rate constant.
    Silva SM; Casallanovo F; Oyamaguchi KH; Ciscato LF; Stevani CV; Baader WJ
    Luminescence; 2002; 17(5):313-20. PubMed ID: 12407670
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cyclic Peroxidic Carbon Dioxide Dimer Fuels Peroxyoxalate Chemiluminescence.
    da Silva SM; Lang AP; Dos Santos APF; Cabello MC; Ciscato LFML; Bartoloni FH; Bastos EL; Baader WJ
    J Org Chem; 2021 Sep; 86(17):11434-11441. PubMed ID: 34420296
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The Theoretical Estimation of the Bioluminescent Efficiency of the Firefly via a Nonadiabatic Molecular Dynamics Simulation.
    Yue L; Lan Z; Liu YJ
    J Phys Chem Lett; 2015 Feb; 6(3):540-8. PubMed ID: 26261976
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Strong electron correlation in the decomposition reaction of dioxetanone with implications for firefly bioluminescence.
    Greenman L; Mazziotti DA
    J Chem Phys; 2010 Oct; 133(16):164110. PubMed ID: 21033778
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mechanistic investigations of the 2-coumaranone chemiluminescence.
    Schramm S; Navizet I; Prasad Karothu D; Oesau P; Bensmann V; Weiss D; Beckert R; Naumov P
    Phys Chem Chem Phys; 2017 Aug; 19(34):22852-22859. PubMed ID: 28812068
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Spectral and photophysical studies of substituted indigo derivatives in their keto forms.
    de Melo JS; Rondão R; Burrows HD; Melo MJ; Navaratnam S; Edge R; Voss G
    Chemphyschem; 2006 Nov; 7(11):2303-11. PubMed ID: 17009279
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Kinetics of two pathways in peroxyoxalate chemiluminescence.
    Hadd AG; Seeber A; Birks JW
    J Org Chem; 2000 May; 65(9):2675-83. PubMed ID: 10808440
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Peroxyoxalate chemiluminescence of N,N'-bistosyl-1H,4H-quinoxaline-2,3-dione and related compounds. Dependence on electronic nature of fluorophores.
    Motoyoshiya J; Sakai N; Imai M; Yamaguchi Y; Koike R; Takaguchi Y; Aoyama H
    J Org Chem; 2002 Oct; 67(21):7314-8. PubMed ID: 12375960
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Aza-BODIPY derivatives: enhanced quantum yields of triplet excited states and the generation of singlet oxygen and their role as facile sustainable photooxygenation catalysts.
    Adarsh N; Shanmugasundaram M; Avirah RR; Ramaiah D
    Chemistry; 2012 Oct; 18(40):12655-62. PubMed ID: 22945021
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Bioluminescence of the firefly: key steps in the formation of the electronically excited state for model systems.
    Koo JA; Schmidt SP; Schuster GB
    Proc Natl Acad Sci U S A; 1978 Jan; 75(1):30-3. PubMed ID: 272645
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Substituent effects on the decomposition of chemiluminescent tricyclic aromatic dioxetanes.
    Sun CW; Chen SC; Fang TS
    Luminescence; 2014 Aug; 29(5):445-50. PubMed ID: 23934725
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Understanding bacterial bioluminescence: a theoretical study of the entire process, from reduced flavin to light emission.
    Hou C; Liu YJ; Ferré N; Fang WH
    Chemistry; 2014 Jun; 20(26):7979-86. PubMed ID: 24825310
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.