These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 22852861)

  • 41. Peroxyoxalate High-Energy Intermediate is Efficiently Decomposed by the Catalyst Imidazole.
    Boaro A; Bartoloni FH
    Photochem Photobiol; 2016 Jul; 92(4):546-51. PubMed ID: 27285215
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Investigation of the Chemiluminescent Reaction of a Fluorinated Analog of Marine Coelenterazine.
    Magalhães CM; Esteves da Silva JCG; Pinto da Silva L
    Materials (Basel); 2024 Feb; 17(4):. PubMed ID: 38399119
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Firefly chemiluminescence and bioluminescence: efficient generation of excited states.
    Pinto da Silva L; Esteves da Silva JC
    Chemphyschem; 2012 Jun; 13(9):2257-62. PubMed ID: 22532490
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Photonic amplification by a singlet-state quantum chain reaction in the photodecarbonylation of crystalline diarylcyclopropenones.
    Kuzmanich G; Gard MN; Garcia-Garibay MA
    J Am Chem Soc; 2009 Aug; 131(32):11606-14. PubMed ID: 19722654
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Chemiluminescent 2,6-diphenylimidazo[1,2-a]pyrazin-3(7H)-ones: a new entry to Cypridina luciferin analogues.
    Ishii Y; Hayashi C; Suzuki Y; Hirano T
    Photochem Photobiol Sci; 2014 Feb; 13(2):182-9. PubMed ID: 24057509
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Mechanism of efficient firefly bioluminescence via adiabatic transition state and seam of sloped conical intersection.
    Chung LW; Hayashi S; Lundberg M; Nakatsu T; Kato H; Morokuma K
    J Am Chem Soc; 2008 Oct; 130(39):12880-1. PubMed ID: 18767834
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Quantum yields of singlet and triplet chemiexcitation of dimethyl 1,2-dioxetane: ab initio nonadiabatic molecular dynamic simulations.
    Yue L; Yu L; Xu C; Zhu C; Liu Y
    Phys Chem Chem Phys; 2020 May; 22(20):11440-11451. PubMed ID: 32390027
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Chemiluminescence in autoxidation of phosphonate carbanions. Phospha-1,2-dioxetanes as the most likely high-energy intermediates.
    Motoyoshiya J; Ikeda T; Tsuboi S; Kusaura T; Takeuchi Y; Hayashi S; Yoshioka S; Takaguchi Y; Aoyama H
    J Org Chem; 2003 Jul; 68(15):5950-5. PubMed ID: 12868931
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The effect of meta versus para substitution on the efficiency of chemiexcitation in the chemically triggered electron-transfer-initiated decomposition of spiroadamantyl dioxetanes.
    Adam W; Trofimov AV
    J Org Chem; 2000 Oct; 65(20):6474-8. PubMed ID: 11052090
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Mechanistic Insight into the Chemiluminescent Decomposition of
    Min CG; Liu QB; Leng Y; Magalhães CM; Huang SJ; Liu CX; Yang XK; da Silva LP
    J Chem Inf Model; 2019 Oct; 59(10):4393-4401. PubMed ID: 31585031
    [No Abstract]   [Full Text] [Related]  

  • 51. Crucial dependence of chemiluminescence efficiency on the syn/anti conformation for intramolecular charge-transfer-induced decomposition of bicyclic dioxetanes bearing an oxidoaryl group.
    Matsumoto M; Suzuki H; Watanabe N; Ijuin HK; Tanaka J; Tanaka C
    J Org Chem; 2011 Jun; 76(12):5006-17. PubMed ID: 21574649
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Thorough Understanding of Bioluminophore Production in Bacterial Bioluminescence.
    Pi S; Luo Y; Liu YJ
    J Phys Chem A; 2022 Sep; 126(38):6604-6616. PubMed ID: 36104940
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Inhibition of peroxyoxalate chemiluminescence by intercalation of fluorescent acceptors between DNA bases.
    Alba FJ; Daban JR
    Photochem Photobiol; 1999 Apr; 69(4):405-9. PubMed ID: 10212573
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Spectroscopic study of the authentic emitter of AMPPD chemiluminescence in alkaline aqueous solution.
    Tu L; Wang Y; Yang Y; Bakker BH; Kong X; Brouwer AM; Buma WJ; Zhang H
    Phys Chem Chem Phys; 2010 Jul; 12(25):6789-94. PubMed ID: 20448866
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Photophysics of halogenated fluoresceins: involvement of both intramolecular electron transfer and heavy atom effect in the deactivation of excited states.
    Zhang XF; Zhang I; Liu L
    Photochem Photobiol; 2010; 86(3):492-8. PubMed ID: 20331524
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Computational study of thioflavin T torsional relaxation in the excited state.
    Stsiapura VI; Maskevich AA; Kuzmitsky VA; Turoverov KK; Kuznetsova IM
    J Phys Chem A; 2007 Jun; 111(22):4829-35. PubMed ID: 17497763
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Theoretical Study on the Formation and Decomposition Mechanisms of Coelenterazine Dioxetanone.
    Xie JM; Leng Y; Cui XY; Min CG; Ren AM; Liu G; Yin Q
    J Phys Chem A; 2023 May; 127(17):3804-3813. PubMed ID: 37083412
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Theoretical Study of the Thermolysis Reaction and Chemiexcitation of Coelenterazine Dioxetanes.
    Magalhães CM; Esteves da Silva JCG; Pinto da Silva L
    J Phys Chem A; 2022 Jun; 126(22):3486-3494. PubMed ID: 35612291
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Chemiluminescence associated with singlet oxygen reactions with amino acids, peptides and proteins.
    Alarcón E; Henríquez C; Aspée A; Lissi EA
    Photochem Photobiol; 2007; 83(3):475-80. PubMed ID: 17034271
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Singlet oxygen generation from the decomposition of alpha-linolenic acid hydroperoxide by cytochrome c and lactoperoxidase.
    Sun S; Bao Z; Ma H; Zhang D; Zheng X
    Biochemistry; 2007 Jun; 46(22):6668-73. PubMed ID: 17497889
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.