These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
54 related articles for article (PubMed ID: 228530)
1. Dynamics of beta adrenoceptor induced amylase release and cyclic AMP accumulation in the guinea pig submandibular gland. Carlsöö B; Danielsson A; Henriksson R; Idahl LA Acta Physiol Scand; 1979 Jul; 106(3):281-7. PubMed ID: 228530 [TBL] [Abstract][Full Text] [Related]
2. Dissociation of beta-adrenoceptor-induced effects on amylase secretion and cyclic adenosine 3', 5' monophosphate accumulation. Carlsöö B; Danielsson A; Henriksson R; Idahl LA Br J Pharmacol; 1982 Apr; 75(4):633-8. PubMed ID: 6175371 [TBL] [Abstract][Full Text] [Related]
3. Effects of 3', 5'-cyclic adenosine monophosphate, 5-hydroxytryptamine, noradrenaline and theophylline on the simultaneous release of peroxidase and amylase from the guinea pig submanibular gland. Carlsöö B; Danielsson A; Marklund S; Stigbrand T Acta Physiol Scand; 1974 Jun; 91(2):203-10. PubMed ID: 4367452 [No Abstract] [Full Text] [Related]
4. Beta-adrenoceptor-mediated inhibition of alpha 1-adrenoceptor-mediated and field stimulation-induced contractile responses in the prostate of the guinea pig. Haynes JM; Hill SJ Br J Pharmacol; 1997 Nov; 122(6):1067-74. PubMed ID: 9401771 [TBL] [Abstract][Full Text] [Related]
5. Effects of alpha- and beta-receptor blocking agents on catecholamine and 5-hydroxytryptamine induced peroxidase and amylase secretion from guinea pig submandibular gland. Carlsöö B; Danielsson A; Marklund S; Stigbrand T Acta Physiol Scand; 1974 Oct; 92(2):263-71. PubMed ID: 4370801 [No Abstract] [Full Text] [Related]
7. The neural control of the serotonin content in mammalian enterochromaffin cells. Pettersson G Acta Physiol Scand Suppl; 1979; 470():1-30. PubMed ID: 229694 [TBL] [Abstract][Full Text] [Related]
8. Isoproterenol-induced amylase release in rabbit parotid acini: relation of protein phosphorylation, cyclic AMP and related kinase activity to changes in secretory rate. Horio B; Dowd F; Watson E; Mednieks M; Warren J J Pharmacol Exp Ther; 1984 May; 229(2):608-14. PubMed ID: 6201608 [TBL] [Abstract][Full Text] [Related]
9. Uptake, localization and secretagogic action of some biogenic amines in the submandibular and pancreatic glands of the guinea pig. Alm P; Carlsöö B; Danielsson A; Sehlin J Med Biol; 1976 Jun; 54(3):210-6. PubMed ID: 1084942 [TBL] [Abstract][Full Text] [Related]
10. Characteristics of amylase secretion induced by various secretagogues examined in perifused rat parotid acinar cells. Yoshimura K; Hiramatsu Y Eur J Morphol; 1998 Aug; 36 Suppl():198-202. PubMed ID: 9825922 [TBL] [Abstract][Full Text] [Related]
11. Rat parotid gland protein kinase activation. Relationship to enzyme secretion. Spearman TN; Butcher FR Mol Pharmacol; 1982 Jan; 21(1):121-7. PubMed ID: 6182452 [TBL] [Abstract][Full Text] [Related]
12. Effects of adrenergic agonists on the oxygen uptake and amylase output in rat submandibular gland slices. Komabayashi T; Sakamoto S; Tsuboi M Jpn J Pharmacol; 1979 Oct; 29(5):707-13. PubMed ID: 94117 [TBL] [Abstract][Full Text] [Related]
13. Effects of chronic reserpine administration on beta adrenergic receptors, adenylate cyclase and phosphodiesterase of the rat submandibular gland. Bylund DB; Forte LR; Morgan DW; Martinez JR J Pharmacol Exp Ther; 1981 Jul; 218(1):134-41. PubMed ID: 6113277 [TBL] [Abstract][Full Text] [Related]
14. Norepinephrine stimulation of pineal cyclic AMP response element-binding protein phosphorylation: primary role of a beta-adrenergic receptor/cyclic AMP mechanism. Roseboom PH; Klein DC Mol Pharmacol; 1995 Mar; 47(3):439-49. PubMed ID: 7700241 [TBL] [Abstract][Full Text] [Related]
15. Cyclic AMP increase by histamine and its analogues in guinea-pig submandibular gland. Saeki K; Seo S; Murakami M Arch Int Pharmacodyn Ther; 1981 Jan; 249(1):52-63. PubMed ID: 6261706 [TBL] [Abstract][Full Text] [Related]
16. beta-Receptor-mediated increase in cyclic AMP with direct stimulation of the sympathetic innervation to the rat parotid gland. Yu JH; Burns S; Jirakulsomchok D; Schneyer CA Ala J Med Sci; 1979 Apr; 16(2):166-9. PubMed ID: 224723 [No Abstract] [Full Text] [Related]
17. Expression and functional analysis of beta-adrenoceptor subtypes in rabbit submandibular gland. Li YM; Zhang Y; Xiang B; Zhang YY; Wu LL; Yu GY Life Sci; 2006 Oct; 79(22):2091-8. PubMed ID: 16914168 [TBL] [Abstract][Full Text] [Related]
18. Adrenergic secretory responses of submandibular tissues from control subjects and cystic fibrosis patients. McPherson MA; Dormer RL; Dodge JA; Goodchild MC Clin Chim Acta; 1985 Jun; 148(3):229-37. PubMed ID: 2412733 [TBL] [Abstract][Full Text] [Related]
19. Ascorbate deficiency impairs the muscarinic-cholinergic and ss-adrenergic receptor signaling systems in the guinea pig submandibular salivary gland. Sawiris PG; Enwonwu CO J Nutr; 2000 Dec; 130(12):2876-82. PubMed ID: 11110840 [TBL] [Abstract][Full Text] [Related]
20. Decreased beta-adrenergic stimulation of glycoprotein secretion in CF mice submandibular glands: reversal by the methylxanthine, IBMX. Mills CL; Dorin JR; Davidson DJ; Porteus DJ; Alton EW; Dormer RL; McPherson MA Biochem Biophys Res Commun; 1995 Oct; 215(2):674-81. PubMed ID: 7488008 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]