BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

243 related articles for article (PubMed ID: 22853327)

  • 1. Nitrogen-induced catalyst restructuring for epitaxial growth of multiwalled carbon nanotubes.
    Pattinson SW; Ranganathan V; Murakami HK; Koziol KK; Windle AH
    ACS Nano; 2012 Sep; 6(9):7723-30. PubMed ID: 22853327
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Striking influence of the catalyst support and its acid-base properties: new insight into the growth mechanism of carbon nanotubes.
    Magrez A; Smajda R; Seo JW; Horváth E; Ribic PR; Andresen JC; Acquaviva D; Olariu A; Laurenczy G; Forró L
    ACS Nano; 2011 May; 5(5):3428-37. PubMed ID: 21517089
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Direct growth of aligned carbon nanotubes on bulk metals.
    Talapatra S; Kar S; Pal SK; Vajtai R; Ci L; Victor P; Shaijumon MM; Kaur S; Nalamasu O; Ajayan PM
    Nat Nanotechnol; 2006 Nov; 1(2):112-6. PubMed ID: 18654161
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In situ nucleation of carbon nanotubes by the injection of carbon atoms into metal particles.
    Rodríguez-Manzo JA; Terrones M; Terrones H; Kroto HW; Sun L; Banhart F
    Nat Nanotechnol; 2007 May; 2(5):307-11. PubMed ID: 18654289
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Linear and spiral forms of longitudinal cuts in graphitized N-doped multiwalled carbon nanotubes (g-N-MWCNTs).
    Meier MS; Selegue JP; Cassity KB; Kaur AP; Qian D
    J Phys Condens Matter; 2010 Aug; 22(33):334219. PubMed ID: 21386509
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Heterodoped nanotubes: theory, synthesis, and characterization of phosphorus-nitrogen doped multiwalled carbon nanotubes.
    Cruz-Silva E; Cullen DA; Gu L; Romo-Herrera JM; Muñoz-Sandoval E; López-Urías F; Sumpter BG; Meunier V; Charlier JC; Smith DJ; Terrones H; Terrones M
    ACS Nano; 2008 Mar; 2(3):441-8. PubMed ID: 19206568
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Carbon nanotube nucleation driven by catalyst morphology dynamics.
    Pigos E; Penev ES; Ribas MA; Sharma R; Yakobson BI; Harutyunyan AR
    ACS Nano; 2011 Dec; 5(12):10096-101. PubMed ID: 22082229
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Unravelling the mechanisms behind mixed catalysts for the high yield production of single-walled carbon nanotubes.
    Tetali S; Zaka M; Schönfelder R; Bachmatiuk A; Börrnert F; Ibrahim I; Lin JH; Cuniberti G; Warner JH; Büchner B; Rümmeli MH
    ACS Nano; 2009 Dec; 3(12):3839-44. PubMed ID: 19883094
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chiral-selective CoSO4/SiO2 catalyst for (9,8) single-walled carbon nanotube growth.
    Wang H; Wei L; Ren F; Wang Q; Pfefferle LD; Haller GL; Chen Y
    ACS Nano; 2013 Jan; 7(1):614-26. PubMed ID: 23215361
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Crystallographic order in multi-walled carbon nanotubes synthesized in the presence of nitrogen.
    Ducati C; Koziol K; Friedrichs S; Yates TJ; Shaffer MS; Midgley PA; Windle AH
    Small; 2006 Jun; 2(6):774-84. PubMed ID: 17193122
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Catalytic conversion of graphene into carbon nanotubes via gold nanoclusters at low temperatures.
    Dervishi E; Bourdo S; Driver JA; Watanabe F; Biris AR; Ghosh A; Berry B; Saini V; Biris AS
    ACS Nano; 2012 Jan; 6(1):501-11. PubMed ID: 22148744
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of catalyst thickness and plasma pretreatment on the growth of carbon nanotubes and their field emission properties.
    Uh HS; Park SS; Kim BW
    J Nanosci Nanotechnol; 2007 Nov; 7(11):3731-5. PubMed ID: 18047047
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The rapid growth of vertically aligned carbon nanotubes using laser heating.
    Park JB; Jeong SH; Jeong MS; Lim SC; Lee IH; Lee YH
    Nanotechnology; 2009 May; 20(18):185604. PubMed ID: 19420620
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis, characterization, and manipulation of nitrogen-doped carbon nanotube cups.
    Allen BL; Kichambare PD; Star A
    ACS Nano; 2008 Sep; 2(9):1914-20. PubMed ID: 19206432
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hierarchical assembly of carbon nanotubes-liquid crystal nanocomposite.
    Kundu S; Batabyal SK; Nayek P; Roy SK
    J Nanosci Nanotechnol; 2008 Apr; 8(4):1735-40. PubMed ID: 18572572
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Processes controlling the diameter distribution of single-walled carbon nanotubes during catalytic chemical vapor deposition.
    Picher M; Anglaret E; Arenal R; Jourdain V
    ACS Nano; 2011 Mar; 5(3):2118-25. PubMed ID: 21314174
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Formation of highly dense aligned ribbons and transparent films of single-walled carbon nanotubes directly from carpets.
    Pint CL; Xu YQ; Pasquali M; Hauge RH
    ACS Nano; 2008 Sep; 2(9):1871-8. PubMed ID: 19206427
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Unexpectedly high yield carbon nanotube synthesis from low-activity carbon feedstocks at high concentrations.
    Kimura H; Goto J; Yasuda S; Sakurai S; Yumura M; Futaba DN; Hata K
    ACS Nano; 2013 Apr; 7(4):3150-7. PubMed ID: 23458321
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Healing and sealing carbon nanotubes--growth and closure within a transmission electron microscope.
    Edgar K; Tilley RD; Hendy SC; Schebarchov D
    Nanoscale; 2011 Apr; 3(4):1493-6. PubMed ID: 21394380
    [TBL] [Abstract][Full Text] [Related]  

  • 20. How does a carbon nanotube grow? An in situ investigation on the cap evolution.
    Jin C; Suenaga K; Iijima S
    ACS Nano; 2008 Jun; 2(6):1275-9. PubMed ID: 19206345
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.