These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

243 related articles for article (PubMed ID: 22853327)

  • 21. Flow-dependent directional growth of carbon nanotube forests by chemical vapor deposition.
    Kim H; Kim KS; Kang J; Park YC; Chun KY; Boo JH; Kim YJ; Hong BH; Choi JB
    Nanotechnology; 2011 Mar; 22(9):095303. PubMed ID: 21270486
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Growth kinetics of vertically aligned carbon nanotube arrays in clean oxygen-free conditions.
    In JB; Grigoropoulos CP; Chernov AA; Noy A
    ACS Nano; 2011 Dec; 5(12):9602-10. PubMed ID: 22070618
    [TBL] [Abstract][Full Text] [Related]  

  • 23. 3-Orders-of-magnitude density control of single-walled carbon nanotube networks by maximizing catalyst activation and dosing carbon supply.
    Han ZJ; Levchenko I; Yick S; Ostrikov KK
    Nanoscale; 2011 Nov; 3(11):4848-53. PubMed ID: 22006171
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Synthesis of uniform double-walled carbon nanotubes using iron disilicide as catalyst.
    Qi H; Qian C; Liu J
    Nano Lett; 2007 Aug; 7(8):2417-21. PubMed ID: 17655268
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Diameter-selective growth of single-walled carbon nanotubes with high quality by floating catalyst method.
    Liu Q; Ren W; Chen ZG; Wang DW; Liu B; Yu B; Li F; Cong H; Cheng HM
    ACS Nano; 2008 Aug; 2(8):1722-8. PubMed ID: 19206377
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Controlled growth of carbon nanotube-graphene hybrid materials for flexible and transparent conductors and electron field emitters.
    Nguyen DD; Tai NH; Chen SY; Chueh YL
    Nanoscale; 2012 Jan; 4(2):632-8. PubMed ID: 22147118
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Diameter modulation of vertically aligned single-walled carbon nanotubes.
    Xiang R; Einarsson E; Murakami Y; Shiomi J; Chiashi S; Tang Z; Maruyama S
    ACS Nano; 2012 Aug; 6(8):7472-9. PubMed ID: 22812723
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Controllable patterning and CVD growth of isolated carbon nanotubes with direct parallel writing of catalyst using dip-pen nanolithography.
    Kuljanishvili I; Dikin DA; Rozhok S; Mayle S; Chandrasekhar V
    Small; 2009 Nov; 5(22):2523-7. PubMed ID: 19827053
    [No Abstract]   [Full Text] [Related]  

  • 29. Highly selective dispersion of single-walled carbon nanotubes using aromatic polymers.
    Nish A; Hwang JY; Doig J; Nicholas RJ
    Nat Nanotechnol; 2007 Oct; 2(10):640-6. PubMed ID: 18654390
    [TBL] [Abstract][Full Text] [Related]  

  • 30. FTIR spectroscopy of multiwalled carbon nanotubes: a simple approach to study the nitrogen doping.
    Misra A; Tyagi PK; Rai P; Misra DS
    J Nanosci Nanotechnol; 2007 Jun; 7(6):1820-3. PubMed ID: 17654947
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Carbon nanotube patterning with capillary micromolding of catalyst.
    Lee J; Ryu C; Lee S; Jung D; Kim H; Chae H
    J Nanosci Nanotechnol; 2007 Nov; 7(11):4174-9. PubMed ID: 18047145
    [TBL] [Abstract][Full Text] [Related]  

  • 32. G-quartet type self-assembly of guanine functionalized single-walled carbon nanotubes.
    Singh P; Venkatesh V; Nagapradeep N; Verma S; Bianco A
    Nanoscale; 2012 Mar; 4(6):1972-4. PubMed ID: 22344600
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A combination of capillary and dielectrophoresis-driven assembly methods for wafer scale integration of carbon-nanotube-based nanocarpets.
    Seichepine F; Salomon S; Collet M; Guillon S; Nicu L; Larrieu G; Flahaut E; Vieu C
    Nanotechnology; 2012 Mar; 23(9):095303. PubMed ID: 22327351
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Fabrication and characterization of carbon nanotube reinforced poly(methyl methacrylate) nanocomposites.
    Yu S; Juay YK; Young MS
    J Nanosci Nanotechnol; 2008 Apr; 8(4):1852-7. PubMed ID: 18572586
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Direct preparation of carbon nanotubes and nanobelts from polymer.
    Lu B; Guo X; Bao Z; Li X; Liu Y; Zhu C; Wang Y; Xie E
    Nanoscale; 2011 May; 3(5):2145-9. PubMed ID: 21451825
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A novel hybrid carbon material.
    Nasibulin AG; Pikhitsa PV; Jiang H; Brown DP; Krasheninnikov AV; Anisimov AS; Queipo P; Moisala A; Gonzalez D; Lientschnig G; Hassanien A; Shandakov SD; Lolli G; Resasco DE; Choi M; Tománek D; Kauppinen EI
    Nat Nanotechnol; 2007 Mar; 2(3):156-61. PubMed ID: 18654245
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Formation of active sites for oxygen reduction reactions by transformation of nitrogen functionalities in nitrogen-doped carbon nanotubes.
    Sharifi T; Hu G; Jia X; Wågberg T
    ACS Nano; 2012 Oct; 6(10):8904-12. PubMed ID: 23020173
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Multiwalled carbon nanotubes with molybdenum dioxide nanoplugs--new chemical nanoarchitectures by electrochemical modification.
    Jurkschat K; Wilkins SJ; Salter CJ; Leventis HC; Wildgoose GG; Jiang L; Jones TG; Crossley A; Compton RG
    Small; 2006 Jan; 2(1):95-8. PubMed ID: 17193562
    [No Abstract]   [Full Text] [Related]  

  • 39. Carbon nanotube guided formation of silicon oxide nanotrenches.
    Byon HR; Choi HC
    Nat Nanotechnol; 2007 Mar; 2(3):162-6. PubMed ID: 18654246
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Selective actuation of arrays of carbon nanotubes using magnetic resonance.
    Volodin A; Santini CA; De Gendt S; Vereecken PM; Van Haesendonck C
    ACS Nano; 2013 Jul; 7(7):5777-83. PubMed ID: 23742039
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.