These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
162 related articles for article (PubMed ID: 22853879)
1. The adenylate cyclase gene MaAC is required for virulence and multi-stress tolerance of Metarhizium acridum. Liu S; Peng G; Xia Y BMC Microbiol; 2012 Aug; 12():163. PubMed ID: 22853879 [TBL] [Abstract][Full Text] [Related]
2. An ENA ATPase, MaENA1, of Metarhizium acridum influences the Na(+)-, thermo- and UV-tolerances of conidia and is involved in multiple mechanisms of stress tolerance. Ma Q; Jin K; Peng G; Xia Y Fungal Genet Biol; 2015 Oct; 83():68-77. PubMed ID: 26325214 [TBL] [Abstract][Full Text] [Related]
3. Involvement of MaSom1, a downstream transcriptional factor of cAMP/PKA pathway, in conidial yield, stress tolerances, and virulence in Metarhizium acridum. Du Y; Jin K; Xia Y Appl Microbiol Biotechnol; 2018 Jul; 102(13):5611-5623. PubMed ID: 29713793 [TBL] [Abstract][Full Text] [Related]
4. MaHog1, a Hog1-type mitogen-activated protein kinase gene, contributes to stress tolerance and virulence of the entomopathogenic fungus Metarhizium acridum. Jin K; Ming Y; Xia YX Microbiology (Reading); 2012 Dec; 158(Pt 12):2987-2996. PubMed ID: 23038805 [TBL] [Abstract][Full Text] [Related]
5. The Ste12-like transcription factor MaSte12 is involved in pathogenicity by regulating the appressorium formation in the entomopathogenic fungus, Metarhizium acridum. Wei Q; Du Y; Jin K; Xia Y Appl Microbiol Biotechnol; 2017 Dec; 101(23-24):8571-8584. PubMed ID: 29079863 [TBL] [Abstract][Full Text] [Related]
6. MaMk1, a FUS3/KSS1-type mitogen-activated protein kinase gene, is required for appressorium formation, and insect cuticle penetration of the entomopathogenic fungus Metarhizium acridum. Jin K; Han L; Xia Y J Invertebr Pathol; 2014 Jan; 115():68-75. PubMed ID: 24184951 [TBL] [Abstract][Full Text] [Related]
7. MaSnf1, a sucrose non-fermenting protein kinase gene, is involved in carbon source utilization, stress tolerance, and virulence in Metarhizium acridum. Ming Y; Wei Q; Jin K; Xia Y Appl Microbiol Biotechnol; 2014 Dec; 98(24):10153-64. PubMed ID: 25213916 [TBL] [Abstract][Full Text] [Related]
8. The Rab GTPase activating protein Gyp2 contributes to UV stress tolerance in Metarhizium acridum. Xie M; Xia Y; Cao Y World J Microbiol Biotechnol; 2018 May; 34(6):78. PubMed ID: 29796938 [TBL] [Abstract][Full Text] [Related]
9. Mapmi gene contributes to stress tolerance and virulence of the entomopathogenic fungus, Metarhizium acridum. Cao Y; Li M; Xia Y J Invertebr Pathol; 2011 Sep; 108(1):7-12. PubMed ID: 21683706 [TBL] [Abstract][Full Text] [Related]
10. O-mannosyltransferase MaPmt2 contributes to stress tolerance, cell wall integrity and virulence in Metarhizium acridum. Wen Z; Tian H; Xia Y; Jin K J Invertebr Pathol; 2021 Sep; 184():107649. PubMed ID: 34343571 [TBL] [Abstract][Full Text] [Related]
11. A bifunctional catalase-peroxidase, MakatG1, contributes to virulence of Metarhizium acridum by overcoming oxidative stress on the host insect cuticle. Li G; Fan A; Peng G; Keyhani NO; Xin J; Cao Y; Xia Y Environ Microbiol; 2017 Oct; 19(10):4365-4378. PubMed ID: 28925548 [TBL] [Abstract][Full Text] [Related]
12. MaPmt4, a protein O-mannosyltransferase, contributes to cell wall integrity, stress tolerance and virulence in Metarhizium acridum. Zhao T; Tian H; Xia Y; Jin K Curr Genet; 2019 Aug; 65(4):1025-1040. PubMed ID: 30911768 [TBL] [Abstract][Full Text] [Related]
13. The regulatory role of the transcription factor Crz1 in stress tolerance, pathogenicity, and its target gene expression in Metarhizium acridum. Chen X; Liu Y; Keyhani NO; Xia Y; Cao Y Appl Microbiol Biotechnol; 2017 Jun; 101(12):5033-5043. PubMed ID: 28424845 [TBL] [Abstract][Full Text] [Related]
14. Genetically altering the expression of neutral trehalase gene affects conidiospore thermotolerance of the entomopathogenic fungus Metarhizium acridum. Leng Y; Peng G; Cao Y; Xia Y BMC Microbiol; 2011 Feb; 11():32. PubMed ID: 21310069 [TBL] [Abstract][Full Text] [Related]
15. Members of chitin synthase family in Metarhizium acridum differentially affect fungal growth, stress tolerances, cell wall integrity and virulence. Zhang J; Jiang H; Du Y; Keyhani NO; Xia Y; Jin K PLoS Pathog; 2019 Aug; 15(8):e1007964. PubMed ID: 31461507 [TBL] [Abstract][Full Text] [Related]
16. The tetraspanin gene MaPls1 contributes to virulence by affecting germination, appressorial function and enzymes for cuticle degradation in the entomopathogenic fungus, Metarhizium acridum. Luo S; He M; Cao Y; Xia Y Environ Microbiol; 2013 Nov; 15(11):2966-79. PubMed ID: 23809263 [TBL] [Abstract][Full Text] [Related]
17. Increased virulence in the locust-specific fungal pathogen Metarhizium acridum expressing dsRNAs targeting the host F Hu J; Xia Y Pest Manag Sci; 2019 Jan; 75(1):180-186. PubMed ID: 29797423 [TBL] [Abstract][Full Text] [Related]
18. MaPacC, a pH-responsive transcription factor, negatively regulates thermotolerance and contributes to conidiation and virulence in Metarhizium acridum. Zhang M; Wei Q; Xia Y; Jin K Curr Genet; 2020 Apr; 66(2):397-408. PubMed ID: 31471639 [TBL] [Abstract][Full Text] [Related]
19. DNA methyltransferases contribute to the fungal development, stress tolerance and virulence of the entomopathogenic fungus Metarhizium robertsii. Wang Y; Wang T; Qiao L; Zhu J; Fan J; Zhang T; Wang ZX; Li W; Chen A; Huang B Appl Microbiol Biotechnol; 2017 May; 101(10):4215-4226. PubMed ID: 28238081 [TBL] [Abstract][Full Text] [Related]
20. Downregulation of pre-rRNA processing gene Mamrd1 decreases growth, conidiation and virulence in the entomopathogenic fungus Metarhizium acridum. Cao Y; Li K; Xia Y Res Microbiol; 2011 Sep; 162(7):729-36. PubMed ID: 21624460 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]