BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 22853917)

  • 1. Functional importance of short-range binding and long-range solvent interactions in helical antifreeze peptides.
    Ebbinghaus S; Meister K; Prigozhin MB; Devries AL; Havenith M; Dzubiella J; Gruebele M
    Biophys J; 2012 Jul; 103(2):L20-2. PubMed ID: 22853917
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A natural variant of type I antifreeze protein with four ice-binding repeats is a particularly potent antifreeze.
    Chao H; Hodges RS; Kay CM; Gauthier SY; Davies PL
    Protein Sci; 1996 Jun; 5(6):1150-6. PubMed ID: 8762146
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Solution structures, dynamics, and ice growth inhibitory activity of peptide fragments derived from an antarctic yeast protein.
    Shah SH; Kar RK; Asmawi AA; Rahman MB; Murad AM; Mahadi NM; Basri M; Rahman RN; Salleh AB; Chatterjee S; Tejo BA; Bhunia A
    PLoS One; 2012; 7(11):e49788. PubMed ID: 23209600
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of Polar and Nonpolar Groups in the Activity of Antifreeze Proteins: A Molecular Dynamics Simulation Study.
    Midya US; Bandyopadhyay S
    J Phys Chem B; 2018 Oct; 122(40):9389-9398. PubMed ID: 30222341
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rational design of alpha-helical antifreeze peptides.
    Kuiper MJ; Fecondo JV; Wong MG
    J Pept Res; 2002 Jan; 59(1):1-8. PubMed ID: 11906602
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rapid amyloid fibril formation by a winter flounder antifreeze protein requires specific interaction with ice.
    Dubé A; Leggiadro C; Ewart KV
    FEBS Lett; 2016 May; 590(9):1335-44. PubMed ID: 27086686
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of enhanced alpha-helicity on the activity of a winter flounder antifreeze polypeptide.
    Chakrabartty A; Hew CL
    Eur J Biochem; 1991 Dec; 202(3):1057-63. PubMed ID: 1765066
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Antifreeze glycoprotein activity correlates with long-range protein-water dynamics.
    Ebbinghaus S; Meister K; Born B; DeVries AL; Gruebele M; Havenith M
    J Am Chem Soc; 2010 Sep; 132(35):12210-1. PubMed ID: 20712311
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Valine substituted winter flounder 'antifreeze': preservation of ice growth hysteresis.
    Haymet AD; Ward LG; Harding MM; Knight CA
    FEBS Lett; 1998 Jul; 430(3):301-6. PubMed ID: 9688560
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Artificial antifreeze polypeptides: alpha-helical peptides with KAAK motifs have antifreeze and ice crystal morphology modifying properties.
    Zhang W; Laursen RA
    FEBS Lett; 1999 Jul; 455(3):372-6. PubMed ID: 10437807
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hyperactive antifreeze protein in flounder species. The sole freeze protectant in American plaice.
    Gauthier SY; Marshall CB; Fletcher GL; Davies PL
    FEBS J; 2005 Sep; 272(17):4439-49. PubMed ID: 16128813
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ice-binding structure and mechanism of an antifreeze protein from winter flounder.
    Sicheri F; Yang DS
    Nature; 1995 Jun; 375(6530):427-31. PubMed ID: 7760940
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A diminished role for hydrogen bonds in antifreeze protein binding to ice.
    Chao H; Houston ME; Hodges RS; Kay CM; Sykes BD; Loewen MC; Davies PL; Sönnichsen FD
    Biochemistry; 1997 Dec; 36(48):14652-60. PubMed ID: 9398184
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure-function relationships in a type I antifreeze polypeptide. The role of threonine methyl and hydroxyl groups in antifreeze activity.
    Zhang W; Laursen RA
    J Biol Chem; 1998 Dec; 273(52):34806-12. PubMed ID: 9857006
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Long-range protein-water dynamics in hyperactive insect antifreeze proteins.
    Meister K; Ebbinghaus S; Xu Y; Duman JG; DeVries A; Gruebele M; Leitner DM; Havenith M
    Proc Natl Acad Sci U S A; 2013 Jan; 110(5):1617-22. PubMed ID: 23277543
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Secretory expression and site-directed mutagenesis studies of the winter flounder skin-type antifreeze polypeptides.
    Lin Q; Ewart KV; Yan Q; Wong WK; Yang DS; Hew CL
    Eur J Biochem; 1999 Aug; 264(1):49-54. PubMed ID: 10447672
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The remarkable hydration of the antifreeze protein Maxi: a computational study.
    Sharp KA
    J Chem Phys; 2014 Dec; 141(22):22D510. PubMed ID: 25494781
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Perturbation of long-range water dynamics as the mechanism for the antifreeze activity of antifreeze glycoprotein.
    Mallajosyula SS; Vanommeslaeghe K; MacKerell AD
    J Phys Chem B; 2014 Oct; 118(40):11696-706. PubMed ID: 25137353
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure-function relationship in a winter flounder antifreeze polypeptide. II. Alteration of the component growth rates of ice by synthetic antifreeze polypeptides.
    Chakrabartty A; Yang DS; Hew CL
    J Biol Chem; 1989 Jul; 264(19):11313-6. PubMed ID: 2738068
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular dynamics simulation of winter flounder antifreeze protein variants in solution: correlation between side chain spacing and ice lattice.
    Jorgensen H; Mori M; Matsui H; Kanaoka M; Yanagi H; Yabusaki Y; Kikuzono Y
    Protein Eng; 1993 Jan; 6(1):19-27. PubMed ID: 8433967
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.