BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 22853918)

  • 1. Elucidation of the mechanistic pathways of the hydroxyl radical scavenging reaction by daidzein using hybrid QM/MM dynamics.
    Chakraborty S; Biswas PK
    J Phys Chem A; 2012 Aug; 116(34):8775-85. PubMed ID: 22853918
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mobility mechanism of hydroxyl radicals in aqueous solution via hydrogen transfer.
    Codorniu-Hernández E; Kusalik PG
    J Am Chem Soc; 2012 Jan; 134(1):532-8. PubMed ID: 22107057
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Scavenging mechanism of curcumin toward the hydroxyl radical: a theoretical study of reactions producing ferulic acid and vanillin.
    Agnihotri N; Mishra PC
    J Phys Chem A; 2011 Dec; 115(49):14221-32. PubMed ID: 22035040
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel chemiluminescence system for the determination of daidzein and its hydroxyl radical-scavenging capacity.
    Cai Z; Zhang X; Lu DF; Gan JN
    Luminescence; 2012; 27(4):256-61. PubMed ID: 21882338
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanisms of formation of 8-oxoguanine due to reactions of one and two OH* radicals and the H2O2 molecule with guanine: A quantum computational study.
    Jena NR; Mishra PC
    J Phys Chem B; 2005 Jul; 109(29):14205-18. PubMed ID: 16852784
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reaction of hydroxyl radicals with azacytosines: a pulse radiolysis and theoretical study.
    Pramod G; Prasanthkumar KP; Mohan H; Manoj VM; Manoj P; Suresh CH; Aravindakumar CT
    J Phys Chem A; 2006 Oct; 110(40):11517-26. PubMed ID: 17020265
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydroxyl radical and hydroxide ion in liquid water: a comparative electron density functional theory study.
    Vassilev P; Louwerse MJ; Baerends EJ
    J Phys Chem B; 2005 Dec; 109(49):23605-10. PubMed ID: 16375337
    [TBL] [Abstract][Full Text] [Related]  

  • 8. OH radical scavenging activity of Edaravone: mechanism and kinetics.
    Pérez-González A; Galano A
    J Phys Chem B; 2011 Feb; 115(5):1306-14. PubMed ID: 21190324
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Antioxidant activity of trans-resveratrol toward hydroxyl and hydroperoxyl radicals: a quantum chemical and computational kinetics study.
    Iuga C; Alvarez-Idaboy JR; Russo N
    J Org Chem; 2012 Apr; 77(8):3868-77. PubMed ID: 22475027
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Radical scavenging ability of gallic acid toward OH and OOH radicals. Reaction mechanism and rate constants from the density functional theory.
    Marino T; Galano A; Russo N
    J Phys Chem B; 2014 Sep; 118(35):10380-9. PubMed ID: 25119432
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The capture of ·H and ·OH radicals by vitamin C and implications for the new source for the formation of the anion free radical.
    Li P; Shen Z; Wang W; Ma Z; Bi S; Sun H; Bu Y
    Phys Chem Chem Phys; 2010; 12(20):5256-67. PubMed ID: 20358130
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reactions of melatonin and related indoles with free radicals: a computational study.
    Turjanski AG; Rosenstein RE; Estrin DA
    J Med Chem; 1998 Sep; 41(19):3684-9. PubMed ID: 9733493
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of allyl group in the hydroxyl and peroxyl radical scavenging activity of S-allylcysteine.
    Maldonado PD; Alvarez-Idaboy JR; Aguilar-González A; Lira-Rocha A; Jung-Cook H; Medina-Campos ON; Pedraza-Chaverrí J; Galano A
    J Phys Chem B; 2011 Nov; 115(45):13408-17. PubMed ID: 21995683
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Time-resolved study on the reactions of organic selenides with hydroxyl and oxide radicals, hydrated electrons, and H-atoms in aqueous solution, and DFT calculations of transients in comparison with sulfur analogues.
    Tobien T; Bonifacić M; Naumov S; Asmus KD
    Phys Chem Chem Phys; 2010 Jul; 12(25):6750-8. PubMed ID: 20431832
    [TBL] [Abstract][Full Text] [Related]  

  • 15. *H atom and *OH radical reactions with 5-methylcytosine.
    Grand A; Morell C; Labet V; Cadet J; Eriksson LA
    J Phys Chem A; 2007 Sep; 111(37):8968-72. PubMed ID: 17722896
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydroxyl radical reactions with adenine: reactant complexes, transition states, and product complexes.
    Cheng Q; Gu J; Compaan KR; Schaefer HF
    Chemistry; 2010 Oct; 16(39):11848-58. PubMed ID: 20878802
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modeling the activity of glutathione as a hydroxyl radical scavenger considering its neutral non-zwitterionic form.
    Yadav A; Mishra PC
    J Mol Model; 2013 Feb; 19(2):767-77. PubMed ID: 23053011
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular mechanisms for the reaction between (˙)OH radicals and proline: insights on the role as reactive oxygen species scavenger in plant stress.
    Signorelli S; Coitiño EL; Borsani O; Monza J
    J Phys Chem B; 2014 Jan; 118(1):37-47. PubMed ID: 24328335
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exploring water catalysis in the reaction of thioformic acid with hydroxyl radical: a global reaction route mapping perspective.
    Kaur G; Vikas
    J Phys Chem A; 2014 Jun; 118(23):4019-29. PubMed ID: 24835635
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanism of the OH radical scavenging activity of nordihydroguaiaretic acid: a combined theoretical and experimental study.
    Galano A; Macías-Ruvalcaba NA; Medina Campos ON; Pedraza-Chaverri J
    J Phys Chem B; 2010 May; 114(19):6625-35. PubMed ID: 20415502
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.