These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 22853918)

  • 1. Elucidation of the mechanistic pathways of the hydroxyl radical scavenging reaction by daidzein using hybrid QM/MM dynamics.
    Chakraborty S; Biswas PK
    J Phys Chem A; 2012 Aug; 116(34):8775-85. PubMed ID: 22853918
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mobility mechanism of hydroxyl radicals in aqueous solution via hydrogen transfer.
    Codorniu-Hernández E; Kusalik PG
    J Am Chem Soc; 2012 Jan; 134(1):532-8. PubMed ID: 22107057
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Scavenging mechanism of curcumin toward the hydroxyl radical: a theoretical study of reactions producing ferulic acid and vanillin.
    Agnihotri N; Mishra PC
    J Phys Chem A; 2011 Dec; 115(49):14221-32. PubMed ID: 22035040
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel chemiluminescence system for the determination of daidzein and its hydroxyl radical-scavenging capacity.
    Cai Z; Zhang X; Lu DF; Gan JN
    Luminescence; 2012; 27(4):256-61. PubMed ID: 21882338
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanisms of formation of 8-oxoguanine due to reactions of one and two OH* radicals and the H2O2 molecule with guanine: A quantum computational study.
    Jena NR; Mishra PC
    J Phys Chem B; 2005 Jul; 109(29):14205-18. PubMed ID: 16852784
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reaction of hydroxyl radicals with azacytosines: a pulse radiolysis and theoretical study.
    Pramod G; Prasanthkumar KP; Mohan H; Manoj VM; Manoj P; Suresh CH; Aravindakumar CT
    J Phys Chem A; 2006 Oct; 110(40):11517-26. PubMed ID: 17020265
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydroxyl radical and hydroxide ion in liquid water: a comparative electron density functional theory study.
    Vassilev P; Louwerse MJ; Baerends EJ
    J Phys Chem B; 2005 Dec; 109(49):23605-10. PubMed ID: 16375337
    [TBL] [Abstract][Full Text] [Related]  

  • 8. OH radical scavenging activity of Edaravone: mechanism and kinetics.
    Pérez-González A; Galano A
    J Phys Chem B; 2011 Feb; 115(5):1306-14. PubMed ID: 21190324
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Antioxidant activity of trans-resveratrol toward hydroxyl and hydroperoxyl radicals: a quantum chemical and computational kinetics study.
    Iuga C; Alvarez-Idaboy JR; Russo N
    J Org Chem; 2012 Apr; 77(8):3868-77. PubMed ID: 22475027
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Radical scavenging ability of gallic acid toward OH and OOH radicals. Reaction mechanism and rate constants from the density functional theory.
    Marino T; Galano A; Russo N
    J Phys Chem B; 2014 Sep; 118(35):10380-9. PubMed ID: 25119432
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The capture of ·H and ·OH radicals by vitamin C and implications for the new source for the formation of the anion free radical.
    Li P; Shen Z; Wang W; Ma Z; Bi S; Sun H; Bu Y
    Phys Chem Chem Phys; 2010; 12(20):5256-67. PubMed ID: 20358130
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reactions of melatonin and related indoles with free radicals: a computational study.
    Turjanski AG; Rosenstein RE; Estrin DA
    J Med Chem; 1998 Sep; 41(19):3684-9. PubMed ID: 9733493
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of allyl group in the hydroxyl and peroxyl radical scavenging activity of S-allylcysteine.
    Maldonado PD; Alvarez-Idaboy JR; Aguilar-González A; Lira-Rocha A; Jung-Cook H; Medina-Campos ON; Pedraza-Chaverrí J; Galano A
    J Phys Chem B; 2011 Nov; 115(45):13408-17. PubMed ID: 21995683
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Time-resolved study on the reactions of organic selenides with hydroxyl and oxide radicals, hydrated electrons, and H-atoms in aqueous solution, and DFT calculations of transients in comparison with sulfur analogues.
    Tobien T; Bonifacić M; Naumov S; Asmus KD
    Phys Chem Chem Phys; 2010 Jul; 12(25):6750-8. PubMed ID: 20431832
    [TBL] [Abstract][Full Text] [Related]  

  • 15. *H atom and *OH radical reactions with 5-methylcytosine.
    Grand A; Morell C; Labet V; Cadet J; Eriksson LA
    J Phys Chem A; 2007 Sep; 111(37):8968-72. PubMed ID: 17722896
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydroxyl radical reactions with adenine: reactant complexes, transition states, and product complexes.
    Cheng Q; Gu J; Compaan KR; Schaefer HF
    Chemistry; 2010 Oct; 16(39):11848-58. PubMed ID: 20878802
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modeling the activity of glutathione as a hydroxyl radical scavenger considering its neutral non-zwitterionic form.
    Yadav A; Mishra PC
    J Mol Model; 2013 Feb; 19(2):767-77. PubMed ID: 23053011
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular mechanisms for the reaction between (˙)OH radicals and proline: insights on the role as reactive oxygen species scavenger in plant stress.
    Signorelli S; Coitiño EL; Borsani O; Monza J
    J Phys Chem B; 2014 Jan; 118(1):37-47. PubMed ID: 24328335
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exploring water catalysis in the reaction of thioformic acid with hydroxyl radical: a global reaction route mapping perspective.
    Kaur G; Vikas
    J Phys Chem A; 2014 Jun; 118(23):4019-29. PubMed ID: 24835635
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanism of the OH radical scavenging activity of nordihydroguaiaretic acid: a combined theoretical and experimental study.
    Galano A; Macías-Ruvalcaba NA; Medina Campos ON; Pedraza-Chaverri J
    J Phys Chem B; 2010 May; 114(19):6625-35. PubMed ID: 20415502
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.