BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

794 related articles for article (PubMed ID: 22853953)

  • 1. Detection of ultra-rare mutations by next-generation sequencing.
    Schmitt MW; Kennedy SR; Salk JJ; Fox EJ; Hiatt JB; Loeb LA
    Proc Natl Acad Sci U S A; 2012 Sep; 109(36):14508-13. PubMed ID: 22853953
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Targeted sequencing of both DNA strands barcoded and captured individually by RNA probes to identify genome-wide ultra-rare mutations.
    Wang Q; Wang X; Tang PS; O'leary GM; Zhang M
    Sci Rep; 2017 Jun; 7(1):3356. PubMed ID: 28611392
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Detection of Low-Frequency Mutations and Identification of Heat-Induced Artifactual Mutations Using Duplex Sequencing.
    Ahn EH; Lee SH
    Int J Mol Sci; 2019 Jan; 20(1):. PubMed ID: 30625989
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sequence error storms and the landscape of mutations in cancer.
    Kirsch S; Klein CA
    Proc Natl Acad Sci U S A; 2012 Sep; 109(36):14289-90. PubMed ID: 22912407
    [No Abstract]   [Full Text] [Related]  

  • 5. Primer ID Validates Template Sampling Depth and Greatly Reduces the Error Rate of Next-Generation Sequencing of HIV-1 Genomic RNA Populations.
    Zhou S; Jones C; Mieczkowski P; Swanstrom R
    J Virol; 2015 Aug; 89(16):8540-55. PubMed ID: 26041299
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Direct quantification of in vivo mutagenesis and carcinogenesis using duplex sequencing.
    Valentine CC; Young RR; Fielden MR; Kulkarni R; Williams LN; Li T; Minocherhomji S; Salk JJ
    Proc Natl Acad Sci U S A; 2020 Dec; 117(52):33414-33425. PubMed ID: 33318186
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Artifactual mutations resulting from DNA lesions limit detection levels in ultrasensitive sequencing applications.
    Arbeithuber B; Makova KD; Tiemann-Boege I
    DNA Res; 2016 Dec; 23(6):547-559. PubMed ID: 27477585
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Detection of genome-wide low-frequency mutations with Paired-End and Complementary Consensus Sequencing (PECC-Seq) revealed end-repair-derived artifacts as residual errors.
    You X; Thiruppathi S; Liu W; Cao Y; Naito M; Furihata C; Honma M; Luan Y; Suzuki T
    Arch Toxicol; 2020 Oct; 94(10):3475-3485. PubMed ID: 32737516
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Detecting ultralow-frequency mutations by Duplex Sequencing.
    Kennedy SR; Schmitt MW; Fox EJ; Kohrn BF; Salk JJ; Ahn EH; Prindle MJ; Kuong KJ; Shen JC; Risques RA; Loeb LA
    Nat Protoc; 2014 Nov; 9(11):2586-606. PubMed ID: 25299156
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Detection of Ultra-Rare Mitochondrial Mutations in Breast Stem Cells by Duplex Sequencing.
    Ahn EH; Hirohata K; Kohrn BF; Fox EJ; Chang CC; Loeb LA
    PLoS One; 2015; 10(8):e0136216. PubMed ID: 26305705
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Single duplex DNA sequencing with CODEC detects mutations with high sensitivity.
    Bae JH; Liu R; Roberts E; Nguyen E; Tabrizi S; Rhoades J; Blewett T; Xiong K; Gydush G; Shea D; An Z; Patel S; Cheng J; Sridhar S; Liu MH; Lassen E; Skytte AB; Grońska-Pęski M; Shoag JE; Evrony GD; Parsons HA; Mayer EL; Makrigiorgos GM; Golub TR; Adalsteinsson VA
    Nat Genet; 2023 May; 55(5):871-879. PubMed ID: 37106072
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Duplex-Repair enables highly accurate sequencing, despite DNA damage.
    Xiong K; Shea D; Rhoades J; Blewett T; Liu R; Bae JH; Nguyen E; Makrigiorgos GM; Golub TR; Adalsteinsson VA
    Nucleic Acids Res; 2022 Jan; 50(1):e1. PubMed ID: 34591958
    [TBL] [Abstract][Full Text] [Related]  

  • 13. MERIT reveals the impact of genomic context on sequencing error rate in ultra-deep applications.
    Hadigol M; Khiabanian H
    BMC Bioinformatics; 2018 Jun; 19(1):219. PubMed ID: 29884116
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of the correctable decoding sequencing as a new powerful strategy for DNA sequencing.
    Cheng C; Xiao P
    Life Sci Alliance; 2022 Aug; 5(8):. PubMed ID: 35422436
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Application of next-generation sequencing in the detection of low-abundance mutations.
    Yang L; Xin-Yue Y; Jin Y
    Yi Chuan; 2024 Feb; 46(2):126-139. PubMed ID: 38340003
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Next-generation sequencing methodologies to detect low-frequency mutations: "Catch me if you can".
    Menon V; Brash DE
    Mutat Res Rev Mutat Res; 2023; 792():108471. PubMed ID: 37716438
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ultra-deep sequencing detects ovarian cancer cells in peritoneal fluid and reveals somatic TP53 mutations in noncancerous tissues.
    Krimmel JD; Schmitt MW; Harrell MI; Agnew KJ; Kennedy SR; Emond MJ; Loeb LA; Swisher EM; Risques RA
    Proc Natl Acad Sci U S A; 2016 May; 113(21):6005-10. PubMed ID: 27152024
    [TBL] [Abstract][Full Text] [Related]  

  • 18. DELFMUT: duplex sequencing-oriented depth estimation model for stable detection of low-frequency mutations.
    Wu G; Song M; Wang K; Cui T; Jiao Z; Ji L; Gao X; Wang J; Liu T; Xia X; Fang H; Guan Y; Yi X
    Brief Bioinform; 2023 Sep; 24(5):. PubMed ID: 37539831
    [TBL] [Abstract][Full Text] [Related]  

  • 19. MinION™ nanopore sequencing of environmental metagenomes: a synthetic approach.
    Brown BL; Watson M; Minot SS; Rivera MC; Franklin RB
    Gigascience; 2017 Mar; 6(3):1-10. PubMed ID: 28327976
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Targeted single molecule mutation detection with massively parallel sequencing.
    Gregory MT; Bertout JA; Ericson NG; Taylor SD; Mukherjee R; Robins HS; Drescher CW; Bielas JH
    Nucleic Acids Res; 2016 Feb; 44(3):e22. PubMed ID: 26384417
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 40.