These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Mechanism of fine ripple formation on surfaces of (semi)transparent materials via a half-wavelength cavity feedback. Buividas R; Rosa L; Sliupas R; Kudrius T; Slekys G; Datsyuk V; Juodkazis S Nanotechnology; 2011 Feb; 22(5):055304. PubMed ID: 21178251 [TBL] [Abstract][Full Text] [Related]
5. Formation of 100-nm periodic structures on a titanium surface by exploiting the oxidation and third harmonic generation induced by femtosecond laser pulses. Li XF; Zhang CY; Li H; Dai QF; Lan S; Tie SL Opt Express; 2014 Nov; 22(23):28086-99. PubMed ID: 25402049 [TBL] [Abstract][Full Text] [Related]
6. Large-area, uniform, high-spatial-frequency ripples generated on silicon using a nanojoule-femtosecond laser at high repetition rate. Le Harzic R; Dörr D; Sauer D; Neumeier M; Epple M; Zimmermann H; Stracke F Opt Lett; 2011 Jan; 36(2):229-31. PubMed ID: 21263509 [TBL] [Abstract][Full Text] [Related]
7. Femtosecond Laser-Induced Periodic Surface Structures in Titanium-Doped Diamond-like Nanocomposite Films: Effects of the Beam Polarization Rotation. Pimenov SM; Zavedeev EV; Jaeggi B; Neuenschwander B Materials (Basel); 2023 Jan; 16(2):. PubMed ID: 36676529 [TBL] [Abstract][Full Text] [Related]
8. High speed inscription of uniform, large-area laser-induced periodic surface structures in Cr films using a high repetition rate fs laser. Ruiz de la Cruz A; Lahoz R; Siegel J; de la Fuente GF; Solis J Opt Lett; 2014 Apr; 39(8):2491-4. PubMed ID: 24979026 [TBL] [Abstract][Full Text] [Related]
9. Subwavelength ripples adjustment based on electron dynamics control by using shaped ultrafast laser pulse trains. Jiang L; Shi X; Li X; Yuan Y; Wang C; Lu Y Opt Express; 2012 Sep; 20(19):21505-11. PubMed ID: 23037270 [TBL] [Abstract][Full Text] [Related]
10. Polarization dependent ripples induced by femtosecond laser on dense flint (ZF6) glass. Han Y; Zhao X; Qu S Opt Express; 2011 Sep; 19(20):19150-5. PubMed ID: 21996857 [TBL] [Abstract][Full Text] [Related]
11. Temperature dependence of laser-induced micro/nanostructures for femtosecond laser irradiation of silicon. Deng G; Feng G; Liu K; Zhou S Appl Opt; 2014 May; 53(14):3004-9. PubMed ID: 24922019 [TBL] [Abstract][Full Text] [Related]
12. Fs-laser scissors for photobleaching, ablation in fixed samples and living cells, and studies of cell mechanics. Heisterkamp A; Baumgart J; Maxwell IZ; Ngezahayo A; Mazur E; Lubatschowski H Methods Cell Biol; 2007; 82():293-307. PubMed ID: 17586261 [TBL] [Abstract][Full Text] [Related]
13. Experimental study of fs-laser induced sub-100-nm periodic surface structures on titanium. Nathala CS; Ajami A; Ionin AA; Kudryashov SI; Makarov SV; Ganz T; Assion A; Husinsky W Opt Express; 2015 Mar; 23(5):5915-29. PubMed ID: 25836818 [TBL] [Abstract][Full Text] [Related]
14. Femtosecond laser-induced periodic structure adjustments based on electron dynamics control: from subwavelength ripples to double-grating structures. Shi X; Jiang L; Li X; Wang S; Yuan Y; Lu Y Opt Lett; 2013 Oct; 38(19):3743-6. PubMed ID: 24081041 [TBL] [Abstract][Full Text] [Related]
15. Self-organized periodic structures on Ge-S based chalcogenide glass induced by femtosecond laser irradiation. Messaddeq SH; Vallée R; Soucy P; Bernier M; El-Amraoui M; Messaddeq Y Opt Express; 2012 Dec; 20(28):29882-9. PubMed ID: 23388814 [TBL] [Abstract][Full Text] [Related]
16. Dissolution studies of bovine dental enamel surfaces modified by high-speed scanning ablation with a lambda = 9.3-microm TEA CO(2) laser. Fried D; Featherstone JD; Le CQ; Fan K Lasers Surg Med; 2006 Oct; 38(9):837-45. PubMed ID: 17044095 [TBL] [Abstract][Full Text] [Related]
17. Effects of irradiance and spot size on pulsed olmium laser ablation of tissue. Domankevitz Y; Lee MS; Nishioka NS Appl Opt; 1993 Feb; 32(4):569-73. PubMed ID: 20802726 [TBL] [Abstract][Full Text] [Related]
18. Experimental setup to determine the pulse energies and radiant exposures for excimer lasers with repetition rates ranging from 100 to 1050 Hz. Mrochen M; Wuellner C; Rose K; Donitzky C J Cataract Refract Surg; 2009 Oct; 35(10):1806-14. PubMed ID: 19781478 [TBL] [Abstract][Full Text] [Related]
19. High-repetition-rate, high-peak-power, linear-polarized 473 nm Nd:YAG/BiBO blue laser by extracavity frequency doubling. Chen F; Yu X; Yan R; Li X; Wang C; Yu J; Zhang Z Opt Lett; 2010 Aug; 35(16):2714-6. PubMed ID: 20717433 [TBL] [Abstract][Full Text] [Related]