These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 22854475)

  • 1. Polarization-dependent ablation of silicon using tightly focused femtosecond laser vortex pulses.
    Hnatovsky C; Shvedov VG; Shostka N; Rode AV; Krolikowski W
    Opt Lett; 2012 Jan; 37(2):226-8. PubMed ID: 22854475
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Materials processing with a tightly focused femtosecond laser vortex pulse.
    Hnatovsky C; Shvedov VG; Krolikowski W; Rode AV
    Opt Lett; 2010 Oct; 35(20):3417-9. PubMed ID: 20967085
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Laser ablation of silicon induced by a femtosecond optical vortex beam.
    Nivas JJ; Shutong H; Anoop KK; Rubano A; Fittipaldi R; Vecchione A; Paparo D; Marrucci L; Bruzzese R; Amoruso S
    Opt Lett; 2015 Oct; 40(20):4611-4. PubMed ID: 26469576
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Twisting light with micro-spheres produced by ultrashort light pulses.
    Beresna M; Gecevičius M; Bulgakova NM; Kazansky PG
    Opt Express; 2011 Sep; 19(20):18989-96. PubMed ID: 21996840
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Broadband supercontinuum generation in air using tightly focused femtosecond laser pulses.
    Liu XL; Lu X; Liu X; Feng LB; Ma JL; Li YT; Chen LM; Dong QL; Wang WM; Wang ZH; Wei ZY; Sheng ZM; Zhang J
    Opt Lett; 2011 Oct; 36(19):3900-2. PubMed ID: 21964135
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Subwavelength multiple focal spots produced by tight focusing the patterned vector optical fields.
    Cai M; Tu C; Zhang H; Qian S; Lou K; Li Y; Wang HT
    Opt Express; 2013 Dec; 21(25):31469-82. PubMed ID: 24514721
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Theoretical and experimental studies on tightly focused vector vortex beams.
    Zhou Z; Tan Q; Jin G
    Appl Opt; 2011 Nov; 50(31):G80-5. PubMed ID: 22086053
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhancement of anthracene fragmentation by circularly polarized intense femtosecond laser pulse.
    Murakami M; Tanaka M; Yatsuhashi T; Nakashima N
    J Chem Phys; 2007 Mar; 126(10):104304. PubMed ID: 17362065
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Direct writing anisotropy on crystalline silicon surface by linearly polarized femtosecond laser.
    Liu P; Jiang L; Hu J; Han W; Lu Y
    Opt Lett; 2013 Jun; 38(11):1969-71. PubMed ID: 23722806
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sub-diffraction-limited fluorescent patterns by tightly focusing polarized femtosecond vortex beams in a silver-containing glass.
    Lee E; Petit Y; Brasselet E; Cardinal T; Park SH; Canioni L
    Opt Express; 2017 May; 25(9):10565-10573. PubMed ID: 28468429
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Manipulation of dielectric Rayleigh particles using highly focused elliptically polarized vector fields.
    Gu B; Xu D; Rui G; Lian M; Cui Y; Zhan Q
    Appl Opt; 2015 Sep; 54(27):8123-9. PubMed ID: 26406514
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Polarization distribution control of parallel femtosecond pulses with spatial light modulators.
    Hasegawa S; Hayasaki Y
    Opt Express; 2013 Jun; 21(11):12987-95. PubMed ID: 23736552
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Silicon microprotrusions with tailored chirality enabled by direct femtosecond laser ablation.
    Syubaev S; Mitsai E; Porfirev A; Khonina S; Kudryashov S; Katkus T; Juodkazis S; Gurevich EL; Kuchmizhak A
    Opt Lett; 2020 Jun; 45(11):3050-3053. PubMed ID: 32479456
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure-Mediated Excitation of Air Plasma and Silicon Plasma Expansion in Femtosecond Laser Pulses Ablation.
    Wang Q; Jiang L; Sun J; Pan C; Han W; Wang G; Wang F; Zhang K; Li M; Lu Y
    Research (Wash D C); 2018; 2018():5709748. PubMed ID: 31549032
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Plasma luminescence from femtosecond filaments in air: evidence for impact excitation with circularly polarized light pulses.
    Mitryukovskiy S; Liu Y; Ding P; Houard A; Couairon A; Mysyrowicz A
    Phys Rev Lett; 2015 Feb; 114(6):063003. PubMed ID: 25723217
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differences in the evolution of surface-microstructured silicon fabricated by femtosecond laser pulses with different wavelength.
    Peng Y; Zhang D; Chen H; Wen Y; Luo S; Chen L; Chen K; Zhu Y
    Appl Opt; 2012 Feb; 51(5):635-9. PubMed ID: 22330297
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ablation of cytoskeletal filaments and mitochondria in live cells using a femtosecond laser nanoscissor.
    Shen N; Datta D; Schaffer CB; LeDuc P; Ingber DE; Mazur E
    Mech Chem Biosyst; 2005; 2(1):17-25. PubMed ID: 16708469
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electron vortices in photoionization by circularly polarized attosecond pulses.
    Ngoko Djiokap JM; Hu SX; Madsen LB; Manakov NL; Meremianin AV; Starace AF
    Phys Rev Lett; 2015 Sep; 115(11):113004. PubMed ID: 26406828
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Filamentation of arbitrary polarized femtosecond laser pulses in case of high-order Kerr effect.
    Panov NA; Makarov VA; Fedorov VY; Kosareva OG
    Opt Lett; 2013 Feb; 38(4):537-9. PubMed ID: 23455128
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gain dynamics of a free-space nitrogen laser pumped by circularly polarized femtosecond laser pulses.
    Yao J; Xie H; Zeng B; Chu W; Li G; Ni J; Zhang H; Jing C; Zhang C; Xu H; Cheng Y; Xu Z
    Opt Express; 2014 Aug; 22(16):19005-13. PubMed ID: 25320986
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.