BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 22855118)

  • 1. Cationic nanoparticles have superior transvascular flux into solid tumors: insights from a mathematical model.
    Stylianopoulos T; Soteriou K; Fukumura D; Jain RK
    Ann Biomed Eng; 2013 Jan; 41(1):68-77. PubMed ID: 22855118
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Diffusion of particles in the extracellular matrix: the effect of repulsive electrostatic interactions.
    Stylianopoulos T; Poh MZ; Insin N; Bawendi MG; Fukumura D; Munn LL; Jain RK
    Biophys J; 2010 Sep; 99(5):1342-9. PubMed ID: 20816045
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transvascular drug delivery in solid tumors.
    Yuan F
    Semin Radiat Oncol; 1998 Jul; 8(3):164-75. PubMed ID: 9634493
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Charge-directed targeting of antimicrobial protein-nanoparticle conjugates.
    Satishkumar R; Vertegel A
    Biotechnol Bioeng; 2008 Jun; 100(3):403-12. PubMed ID: 18183633
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Extension of a multiphase tumour growth model to study nanoparticle delivery to solid tumours.
    Wirthl B; Kremheller J; Schrefler BA; Wall WA
    PLoS One; 2020; 15(2):e0228443. PubMed ID: 32023318
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Remodeling Tumor Vasculature to Enhance Delivery of Intermediate-Sized Nanoparticles.
    Jiang W; Huang Y; An Y; Kim BY
    ACS Nano; 2015 Sep; 9(9):8689-96. PubMed ID: 26212564
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Charge-Switchable nanoparticles to enhance tumor penetration and accumulation.
    Souri M; Golzaryan A; Soltani M
    Eur J Pharm Biopharm; 2024 Jun; 199():114310. PubMed ID: 38705311
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simulation of transport and extravasation of nanoparticles in tumors which exhibit enhanced permeability and retention effect.
    Podduturi VP; MagaƱa IB; O'Neal DP; Derosa PA
    Comput Methods Programs Biomed; 2013 Oct; 112(1):58-68. PubMed ID: 23871689
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrostatic driven transport enhances penetration of positively charged peptide surfaces through tumor extracellular matrix.
    Mohanty RP; Liu X; Ghosh D
    Acta Biomater; 2020 Sep; 113():240-251. PubMed ID: 32428687
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cartilage penetrating cationic peptide carriers for applications in drug delivery to avascular negatively charged tissues.
    Vedadghavami A; Wagner EK; Mehta S; He T; Zhang C; Bajpayee AG
    Acta Biomater; 2019 Jul; 93():258-269. PubMed ID: 30529083
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Advances in mathematical models of the active targeting of tumor cells by functional nanoparticles.
    Gao Y; Shi Y; Wang L; Kong S; Du J; Lin G; Feng Y
    Comput Methods Programs Biomed; 2020 Feb; 184():105106. PubMed ID: 31670178
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Novel cationic lipid nanoparticles as an ophthalmic delivery system for multicomponent drugs: development, characterization, in vitro permeation, in vivo pharmacokinetic, and molecular dynamics studies.
    Wang J; Zhao F; Liu R; Chen J; Zhang Q; Lao R; Wang Z; Jin X; Liu C
    Int J Nanomedicine; 2017; 12():8115-8127. PubMed ID: 29158673
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Combining two strategies to improve perfusion and drug delivery in solid tumors.
    Stylianopoulos T; Jain RK
    Proc Natl Acad Sci U S A; 2013 Nov; 110(46):18632-7. PubMed ID: 24167277
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simulation study of the effects of interstitial fluid pressure and blood flow velocity on transvascular transport of nanoparticles in tumor microenvironment.
    Gao Y; Shi Y; Fu M; Feng Y; Lin G; Kong D; Jiang B
    Comput Methods Programs Biomed; 2020 Sep; 193():105493. PubMed ID: 32408237
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Drug delivery and transport to solid tumors.
    Jang SH; Wientjes MG; Lu D; Au JL
    Pharm Res; 2003 Sep; 20(9):1337-50. PubMed ID: 14567626
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nonspherical Nanoparticle Shape Stability Is Affected by Complex Manufacturing Aspects: Its Implications for Drug Delivery and Targeting.
    Haryadi BM; Hafner D; Amin I; Schubel R; Jordan R; Winter G; Engert J
    Adv Healthc Mater; 2019 Sep; 8(18):e1900352. PubMed ID: 31410996
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Zeta potential measurement.
    Clogston JD; Patri AK
    Methods Mol Biol; 2011; 697():63-70. PubMed ID: 21116954
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A mathematical model of the enhanced permeability and retention effect for liposome transport in solid tumors.
    Stapleton S; Milosevic M; Allen C; Zheng J; Dunne M; Yeung I; Jaffray DA
    PLoS One; 2013; 8(12):e81157. PubMed ID: 24312530
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Charged nanoparticle in a nanochannel: Competition between electrostatic and dielectrophoretic forces.
    Hulings ZK; Melnikov DV; Gracheva ME
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jun; 91(6):062713. PubMed ID: 26172742
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simulation of transvascular transport of nanoparticles in tumor microenvironments for drug delivery applications.
    Shabbir F; Mujeeb AA; Jawed SF; Khan AH; Shakeel CS
    Sci Rep; 2024 Jan; 14(1):1764. PubMed ID: 38242952
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.