These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

850 related articles for article (PubMed ID: 22855233)

  • 41. Robotic gaming prototype for upper limb exercise: Effects of age and embodiment on user preferences and movement.
    Eizicovits D; Edan Y; Tabak I; Levy-Tzedek S
    Restor Neurol Neurosci; 2018; 36(2):261-274. PubMed ID: 29526862
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Upper limb robot-assisted therapy in chronic and subacute stroke patients: a kinematic analysis.
    Mazzoleni S; Sale P; Tiboni M; Franceschini M; Carrozza MC; Posteraro F
    Am J Phys Med Rehabil; 2013 Oct; 92(10 Suppl 2):e26-37. PubMed ID: 24052027
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A usability study in patients with stroke using MERLIN, a robotic system based on serious games for upper limb rehabilitation in the home setting.
    Guillén-Climent S; Garzo A; Muñoz-Alcaraz MN; Casado-Adam P; Arcas-Ruiz-Ruano J; Mejías-Ruiz M; Mayordomo-Riera FJ
    J Neuroeng Rehabil; 2021 Feb; 18(1):41. PubMed ID: 33622344
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Reliability, validity and discriminant ability of the instrumental indices provided by a novel planar robotic device for upper limb rehabilitation.
    Germanotta M; Cruciani A; Pecchioli C; Loreti S; Spedicato A; Meotti M; Mosca R; Speranza G; Cecchi F; Giannarelli G; Padua L; Aprile I
    J Neuroeng Rehabil; 2018 May; 15(1):39. PubMed ID: 29769127
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Acceptability of robotic technology in neuro-rehabilitation: preliminary results on chronic stroke patients.
    Mazzoleni S; Turchetti G; Palla I; Posteraro F; Dario P
    Comput Methods Programs Biomed; 2014 Sep; 116(2):116-22. PubMed ID: 24461799
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Automating arm movement training following severe stroke: functional exercises with quantitative feedback in a gravity-reduced environment.
    Sanchez RJ; Liu J; Rao S; Shah P; Smith R; Rahman T; Cramer SC; Bobrow JE; Reinkensmeyer DJ
    IEEE Trans Neural Syst Rehabil Eng; 2006 Sep; 14(3):378-89. PubMed ID: 17009498
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Robot-aided neurorehabilitation in sub-acute and chronic stroke: does spontaneous recovery have a limited impact on outcome?
    Colombo R; Sterpi I; Mazzone A; Delconte C; Pisano F
    NeuroRehabilitation; 2013; 33(4):621-9. PubMed ID: 24029005
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Design and control of RUPERT: a device for robotic upper extremity repetitive therapy.
    Sugar TG; He J; Koeneman EJ; Koeneman JB; Herman R; Huang H; Schultz RS; Herring DE; Wanberg J; Balasubramanian S; Swenson P; Ward JA
    IEEE Trans Neural Syst Rehabil Eng; 2007 Sep; 15(3):336-46. PubMed ID: 17894266
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Upper Limb Robotic Rehabilitation After Stroke: A Multicenter, Randomized Clinical Trial.
    Aprile I; Germanotta M; Cruciani A; Loreti S; Pecchioli C; Cecchi F; Montesano A; Galeri S; Diverio M; Falsini C; Speranza G; Langone E; Papadopoulou D; Padua L; Carrozza MC;
    J Neurol Phys Ther; 2020 Jan; 44(1):3-14. PubMed ID: 31834217
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The Combined Effects of Adaptive Control and Virtual Reality on Robot-Assisted Fine Hand Motion Rehabilitation in Chronic Stroke Patients: A Case Study.
    Huang X; Naghdy F; Naghdy G; Du H; Todd C
    J Stroke Cerebrovasc Dis; 2018 Jan; 27(1):221-228. PubMed ID: 28919312
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Assistive control system using continuous myoelectric signal in robot-aided arm training for patients after stroke.
    Song R; Tong KY; Hu X; Li L
    IEEE Trans Neural Syst Rehabil Eng; 2008 Aug; 16(4):371-9. PubMed ID: 18701384
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Training of reaching in stroke survivors with severe and chronic upper limb paresis using a novel nonrobotic device: a randomized clinical trial.
    Barker RN; Brauer SG; Carson RG
    Stroke; 2008 Jun; 39(6):1800-7. PubMed ID: 18403742
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Effects of electromyography-driven robot-aided hand training with neuromuscular electrical stimulation on hand control performance after chronic stroke.
    Rong W; Tong KY; Hu XL; Ho SK
    Disabil Rehabil Assist Technol; 2015 Mar; 10(2):149-59. PubMed ID: 24377757
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Upper-limb kinematic reconstruction during stroke robot-aided therapy.
    Papaleo E; Zollo L; Garcia-Aracil N; Badesa FJ; Morales R; Mazzoleni S; Sterzi S; Guglielmelli E
    Med Biol Eng Comput; 2015 Sep; 53(9):815-28. PubMed ID: 25861746
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Effects of robot-assisted upper limb rehabilitation in stroke patients: a systematic review with meta-analysis.
    Bertani R; Melegari C; De Cola MC; Bramanti A; Bramanti P; Calabrò RS
    Neurol Sci; 2017 Sep; 38(9):1561-1569. PubMed ID: 28540536
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A novel robotic system for quantifying arm kinematics and kinetics: description and evaluation in therapist-assisted passive arm movements post-stroke.
    Culmer PR; Jackson AE; Makower SG; Cozens JA; Levesley MC; Mon-Williams M; Bhakta B
    J Neurosci Methods; 2011 Apr; 197(2):259-69. PubMed ID: 21414360
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Evolution of upper limb kinematics four years after subacute robot-assisted rehabilitation in stroke patients.
    Pila O; Duret C; Gracies JM; Francisco GE; Bayle N; Hutin É
    Int J Neurosci; 2018 Nov; 128(11):1030-1039. PubMed ID: 29619890
    [No Abstract]   [Full Text] [Related]  

  • 58. Robot training for hand motor recovery in subacute stroke patients: A randomized controlled trial.
    Orihuela-Espina F; Roldán GF; Sánchez-Villavicencio I; Palafox L; Leder R; Sucar LE; Hernández-Franco J
    J Hand Ther; 2016; 29(1):51-7; quiz 57. PubMed ID: 26847320
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The effect of arm support combined with rehabilitation games on upper-extremity function in subacute stroke: a randomized controlled trial.
    Prange GB; Kottink AI; Buurke JH; Eckhardt MM; van Keulen-Rouweler BJ; Ribbers GM; Rietman JS
    Neurorehabil Neural Repair; 2015 Feb; 29(2):174-82. PubMed ID: 24878589
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Combined transcranial direct current stimulation and robot-assisted arm training in subacute stroke patients: an exploratory, randomized multicenter trial.
    Hesse S; Waldner A; Mehrholz J; Tomelleri C; Pohl M; Werner C
    Neurorehabil Neural Repair; 2011; 25(9):838-46. PubMed ID: 21825004
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 43.