BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 22855265)

  • 1. In vitro investigation of fluorescence of carious dentin observed with a Soprolife® camera.
    Panayotov I; Terrer E; Salehi H; Tassery H; Yachouh J; Cuisinier FJ; Levallois B
    Clin Oral Investig; 2013 Apr; 17(3):757-63. PubMed ID: 22855265
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular structural analysis of carious lesions using micro-Raman spectroscopy.
    Levallois B; Terrer E; Panayotov Y; Salehi H; Tassery H; Tramini P; Cuisinier F
    Eur J Oral Sci; 2012 Oct; 120(5):444-51. PubMed ID: 22985003
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Detection of Occlusal Carious Lesion using the SoproLife
    Doméjean S; Rongier J; Muller-Bolla M
    J Contemp Dent Pract; 2016 Sep; 17(9):774-779. PubMed ID: 27733723
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Use of the ICDAS system and two fluorescence-based intraoral devices for examination of occlusal surfaces.
    Theocharopoulou A; Lagerweij MD; van Strijp AJ
    Eur J Paediatr Dent; 2015 Mar; 16(1):51-5. PubMed ID: 25793954
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional mapping of human sound and carious enamel and dentin with Raman spectroscopy.
    Salehi H; Terrer E; Panayotov I; Levallois B; Jacquot B; Tassery H; Cuisinier F
    J Biophotonics; 2013 Oct; 6(10):765-74. PubMed ID: 22996995
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DENTINE CARIES: ACID-TOLERANT MICROORGANISMS AND ASPECTS ON COLLAGEN DEGRADATION.
    Lager AH
    Swed Dent J Suppl; 2014; (233):9-94. PubMed ID: 26688982
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microbiochemical analysis of carious dentine using Raman and fluorescence spectroscopy.
    Almahdy A; Downey FC; Sauro S; Cook RJ; Sherriff M; Richards D; Watson TF; Banerjee A; Festy F
    Caries Res; 2012; 46(5):432-40. PubMed ID: 22739587
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of Nonenzymatic Glycation in Dentinal Collagen on Dental Caries.
    Matsuda Y; Miura J; Shimizu M; Aoki T; Kubo M; Fukushima S; Hashimoto M; Takeshige F; Araki T
    J Dent Res; 2016 Dec; 95(13):1528-1534. PubMed ID: 27523626
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vitro performance of different methods in detecting occlusal caries lesions.
    Gomez J; Zakian C; Salsone S; Pinto SC; Taylor A; Pretty IA; Ellwood R
    J Dent; 2013 Feb; 41(2):180-6. PubMed ID: 23146817
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A new concept in restorative dentistry: LIFEDT-light-induced fluorescence evaluator for diagnosis and treatment: part 2 - treatment of dentinal caries.
    Terrer E; Raskin A; Koubi S; Dionne A; Weisrock G; Sarraquigne C; Mazuir A; Tassery H
    J Contemp Dent Pract; 2010 Jan; 11(1):E095-102. PubMed ID: 20098972
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biochemical characterisation of carious dentine zones using Raman spectroscopy.
    Alturki M; Koller G; Warburton F; Almhöjd U; Banerjee A
    J Dent; 2021 Feb; 105():103558. PubMed ID: 33309806
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dentine microhardness after different methods for detection and removal of carious dentine tissue.
    Mollica FB; Rocha Gomes Torres C; Gonçalves SE; Mancini MN
    J Appl Oral Sci; 2012; 20(4):449-54. PubMed ID: 23032207
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An in vitro investigation of penetration depth of dentine bonding agents into carious dentine.
    Hahn P; Hellwig E
    J Oral Rehabil; 2004 Nov; 31(11):1053-60. PubMed ID: 15525382
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A confocal micro-endoscopic investigation of the relationship between the microhardness of carious dentine and its autofluorescence.
    Banerjee A; Cook R; Kellow S; Shah K; Festy F; Sherriff M; Watson T
    Eur J Oral Sci; 2010 Feb; 118(1):75-9. PubMed ID: 20156268
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Relationship between the color of carious dentin with varying lesion activity, and bacterial detection.
    Iwami Y; Hayashi N; Takeshige F; Ebisu S
    J Dent; 2008 Feb; 36(2):143-51. PubMed ID: 18191886
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of hydration and mechanical characterization of carious primary dentine using an ultra-micro indentation system (UMIS).
    Angker L; Nijhof N; Swain MV; Kilpatrick NM
    Eur J Oral Sci; 2004 Jun; 112(3):231-6. PubMed ID: 15154920
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Performance of Fluorescence-based Systems in Early Caries Detection: A Public Health Issue.
    Terrer E; Slimani A; Giraudeau N; Levallois B; Tramini P; Bonte E; Hua C; Lucchini M; Seux D; Thivichon B; Le Goff A; Cuisinier F; Tassery H
    J Contemp Dent Pract; 2019 Oct; 20(10):1126-1131. PubMed ID: 31883244
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A clinical and microbiological study of deep carious lesions during stepwise excavation using long treatment intervals.
    Bjørndal L; Larsen T; Thylstrup A
    Caries Res; 1997; 31(6):411-7. PubMed ID: 9353579
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differential expression of matrix metalloproteinase-2 in human coronal and radicular sound and carious dentine.
    Toledano M; Nieto-Aguilar R; Osorio R; Campos A; Osorio E; Tay FR; Alaminos M
    J Dent; 2010 Aug; 38(8):635-40. PubMed ID: 20452393
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Maillard reaction in demineralized dentin in vitro.
    Kleter GA; Damen JJ; Buijs MJ; Ten Cate JM
    Eur J Oral Sci; 1997 Jun; 105(3):278-84. PubMed ID: 9249196
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.