These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 22855777)

  • 41. Enhanced excitability of the human visual cortex induced by short-term light deprivation.
    Boroojerdi B; Bushara KO; Corwell B; Immisch I; Battaglia F; Muellbacher W; Cohen LG
    Cereb Cortex; 2000 May; 10(5):529-34. PubMed ID: 10847602
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Sites of neuronal excitation by epiretinal electrical stimulation.
    Schiefer MA; Grill WM
    IEEE Trans Neural Syst Rehabil Eng; 2006 Mar; 14(1):5-13. PubMed ID: 16562626
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The neural signature of phosphene perception.
    Taylor PC; Walsh V; Eimer M
    Hum Brain Mapp; 2010 Sep; 31(9):1408-17. PubMed ID: 20091790
    [TBL] [Abstract][Full Text] [Related]  

  • 44. [Examination of the visual system with transcranial magnetic stimulation].
    Meyer BU; Diehl RR
    Nervenarzt; 1992 Jun; 63(6):328-34. PubMed ID: 1635614
    [TBL] [Abstract][Full Text] [Related]  

  • 45. State-dependency effects on TMS: a look at motive phosphene behavior.
    Najib U; Horvath JC; Silvanto J; Pascual-Leone A
    J Vis Exp; 2010 Dec; (46):. PubMed ID: 21248686
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Phosphenes produced by electrical stimulation of human occipital cortex, and their application to the development of a prosthesis for the blind.
    Dobelle WH; Mladejovsky MG
    J Physiol; 1974 Dec; 243(2):553-76. PubMed ID: 4449074
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Brightness as a function of current amplitude in human retinal electrical stimulation.
    Greenwald SH; Horsager A; Humayun MS; Greenberg RJ; McMahon MJ; Fine I
    Invest Ophthalmol Vis Sci; 2009 Nov; 50(11):5017-25. PubMed ID: 19608533
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Parameters of phosphene-inducing electric stimulation of the cat visual cortex via implanted surface and intracortical electrodes.
    Baziyan BK; Gordeev SA; Ivanova ME; Ortmann VV
    Bull Exp Biol Med; 2008 Jan; 145(1):4-6. PubMed ID: 19023989
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Inducing lateralized phosphenes over the occipital lobe using transcranial magnetic stimulation to navigate a virtual environment.
    Gebrehiwot AN; Kato T; Nakazawa K
    PLoS One; 2021; 16(4):e0249996. PubMed ID: 33852643
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Comparison of cortical responses to the activation of retina by visual stimulation and transcorneal electrical stimulation.
    Sun P; Li H; Lu Z; Su X; Ma Z; Chen J; Li L; Zhou C; Chen Y; Chai X
    Brain Stimul; 2018; 11(4):667-675. PubMed ID: 29525237
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Visual resolution with retinal implants estimated from recordings in cat visual cortex.
    Eckhorn R; Wilms M; Schanze T; Eger M; Hesse L; Eysel UT; Kisvárday ZF; Zrenner E; Gekeler F; Schwahn H; Shinoda K; Sachs H; Walter P
    Vision Res; 2006 Sep; 46(17):2675-90. PubMed ID: 16571357
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Pulse configuration-dependent effects of repetitive transcranial magnetic stimulation on visual perception.
    Antal A; Kincses TZ; Nitsche MA; Bartfai O; Demmer I; Sommer M; Paulus W
    Neuroreport; 2002 Dec; 13(17):2229-33. PubMed ID: 12488802
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Waves of awareness for occipital and parietal phosphenes perception.
    Bagattini C; Mazzi C; Savazzi S
    Neuropsychologia; 2015 Apr; 70():114-25. PubMed ID: 25698639
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Spatially restricted electrical activation of retinal ganglion cells in the rabbit retina by hexapolar electrode return configuration.
    Habib AG; Cameron MA; Suaning GJ; Lovell NH; Morley JW
    J Neural Eng; 2013 Jun; 10(3):036013. PubMed ID: 23612906
    [TBL] [Abstract][Full Text] [Related]  

  • 55. No correlation between moving phosphene and motor thresholds: a transcranial magnetic stimulation study.
    Antal A; Nitsche MA; Kincses TZ; Lampe C; Paulus W
    Neuroreport; 2004 Feb; 15(2):297-302. PubMed ID: 15076756
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Mapping the representation of the visual field by electrical stimulation of human visual cortex.
    Dobelle WH; Turkel J; Henderson DC; Evans JR
    Am J Ophthalmol; 1979 Oct; 88(4):727-35. PubMed ID: 507145
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Spreading photoparoxysmal EEG response is associated with an abnormal cortical excitability pattern.
    Siniatchkin M; Groppa S; Jerosch B; Muhle H; Kurth C; Shepherd AJ; Siebner H; Stephani U
    Brain; 2007 Jan; 130(Pt 1):78-87. PubMed ID: 17121743
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Phosphene perception is due to the ultra-weak photon emission produced in various parts of the visual system: glutamate in the focus.
    Császár N; Scholkmann F; Salari V; Szőke H; Bókkon I
    Rev Neurosci; 2016 Apr; 27(3):291-9. PubMed ID: 26544101
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Preservation of retinotopic map in retinal degeneration.
    Xie J; Wang GJ; Yow L; Humayun MS; Weiland JD; Cela CJ; Jadvar H; Lazzi G; Dhrami-Gavazi E; Tsang SH
    Exp Eye Res; 2012 May; 98():88-96. PubMed ID: 22685713
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Electrical stimulation with a penetrating optic nerve electrode array elicits visuotopic cortical responses in cats.
    Lu Y; Yan Y; Chai X; Ren Q; Chen Y; Li L
    J Neural Eng; 2013 Jun; 10(3):036022. PubMed ID: 23665847
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.