BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

594 related articles for article (PubMed ID: 22855813)

  • 1. Deconstructing the architecture of dorsal and ventral attention systems with dynamic causal modeling.
    Vossel S; Weidner R; Driver J; Friston KJ; Fink GR
    J Neurosci; 2012 Aug; 32(31):10637-48. PubMed ID: 22855813
    [TBL] [Abstract][Full Text] [Related]  

  • 2. What is "odd" in Posner's location-cueing paradigm? Neural responses to unexpected location and feature changes compared.
    Vossel S; Weidner R; Thiel CM; Fink GR
    J Cogn Neurosci; 2009 Jan; 21(1):30-41. PubMed ID: 18476756
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effective connectivity during feature-based attentional capture: evidence against the attentional reorienting hypothesis of TPJ.
    DiQuattro NE; Sawaki R; Geng JJ
    Cereb Cortex; 2014 Dec; 24(12):3131-41. PubMed ID: 23825319
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neural correlates of the spatial and expectancy components of endogenous and stimulus-driven orienting of attention in the Posner task.
    Doricchi F; Macci E; Silvetti M; Macaluso E
    Cereb Cortex; 2010 Jul; 20(7):1574-85. PubMed ID: 19846472
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cortical Coupling Reflects Bayesian Belief Updating in the Deployment of Spatial Attention.
    Vossel S; Mathys C; Stephan KE; Friston KJ
    J Neurosci; 2015 Aug; 35(33):11532-42. PubMed ID: 26290231
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interaction of stimulus-driven reorienting and expectation in ventral and dorsal frontoparietal and basal ganglia-cortical networks.
    Shulman GL; Astafiev SV; Franke D; Pope DL; Snyder AZ; McAvoy MP; Corbetta M
    J Neurosci; 2009 Apr; 29(14):4392-407. PubMed ID: 19357267
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Distinct roles of the intraparietal sulcus and temporoparietal junction in attentional capture from distractor features: An individual differences approach.
    Painter DR; Dux PE; Mattingley JB
    Neuropsychologia; 2015 Jul; 74():50-62. PubMed ID: 25724234
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Top-down and bottom-up attentional guidance: investigating the role of the dorsal and ventral parietal cortices.
    Shomstein S; Lee J; Behrmann M
    Exp Brain Res; 2010 Oct; 206(2):197-208. PubMed ID: 20571784
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cue validity modulates the neural correlates of covert endogenous orienting of attention in parietal and frontal cortex.
    Vossel S; Thiel CM; Fink GR
    Neuroimage; 2006 Sep; 32(3):1257-64. PubMed ID: 16846742
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Specific Visual Subregions of TPJ Mediate Reorienting of Spatial Attention.
    Dugué L; Merriam EP; Heeger DJ; Carrasco M
    Cereb Cortex; 2018 Jul; 28(7):2375-2390. PubMed ID: 28981585
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Concurrent TMS-fMRI Reveals Interactions between Dorsal and Ventral Attentional Systems.
    Leitão J; Thielscher A; Tünnerhoff J; Noppeney U
    J Neurosci; 2015 Aug; 35(32):11445-57. PubMed ID: 26269649
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Contextual knowledge configures attentional control networks.
    DiQuattro NE; Geng JJ
    J Neurosci; 2011 Dec; 31(49):18026-35. PubMed ID: 22159116
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An event-related functional magnetic resonance imaging study of voluntary and stimulus-driven orienting of attention.
    Kincade JM; Abrams RA; Astafiev SV; Shulman GL; Corbetta M
    J Neurosci; 2005 May; 25(18):4593-604. PubMed ID: 15872107
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Frontoparietal cortex controls spatial attention through modulation of anticipatory alpha rhythms.
    Capotosto P; Babiloni C; Romani GL; Corbetta M
    J Neurosci; 2009 May; 29(18):5863-72. PubMed ID: 19420253
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional connectivity between prefrontal and parietal cortex drives visuo-spatial attention shifts.
    Heinen K; Feredoes E; Ruff CC; Driver J
    Neuropsychologia; 2017 May; 99():81-91. PubMed ID: 28254653
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of the cholinergic agonist nicotine on reorienting of visual spatial attention and top-down attentional control.
    Thiel CM; Fink GR
    Neuroscience; 2008 Mar; 152(2):381-90. PubMed ID: 18272290
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The attention network of the human brain: relating structural damage associated with spatial neglect to functional imaging correlates of spatial attention.
    Ptak R; Schnider A
    Neuropsychologia; 2011 Sep; 49(11):3063-70. PubMed ID: 21787795
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Response of the Left Ventral Attentional System to Invalid Targets and its Implication for the Spatial Neglect Syndrome: a Multivariate fMRI Investigation.
    Silvetti M; Lasaponara S; Lecce F; Dragone A; Macaluso E; Doricchi F
    Cereb Cortex; 2016 Dec; 26(12):4551-4562. PubMed ID: 26405052
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interactions between voluntary and stimulus-driven spatial attention mechanisms across sensory modalities.
    Santangelo V; Olivetti Belardinelli M; Spence C; Macaluso E
    J Cogn Neurosci; 2009 Dec; 21(12):2384-97. PubMed ID: 19199406
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neural mechanisms of attentional reorienting in three-dimensional space.
    Chen Q; Weidner R; Vossel S; Weiss PH; Fink GR
    J Neurosci; 2012 Sep; 32(39):13352-62. PubMed ID: 23015426
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 30.