These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
115 related articles for article (PubMed ID: 22856139)
1. [The influence of glucose on the free radical peroxidation of low density lipoproteins in vitro and in vivo]. Lankin VZ; Konovalova GG; Tikhaze AK; Nedosugova LV Biomed Khim; 2012; 58(3):339-52. PubMed ID: 22856139 [TBL] [Abstract][Full Text] [Related]
2. The initiation of free radical peroxidation of low-density lipoproteins by glucose and its metabolite methylglyoxal: a common molecular mechanism of vascular wall injure in atherosclerosis and diabetes. Lankin V; Konovalova G; Tikhaze A; Shumaev K; Kumskova E; Viigimaa M Mol Cell Biochem; 2014 Oct; 395(1-2):241-52. PubMed ID: 24997046 [TBL] [Abstract][Full Text] [Related]
3. Effects of acarbose versus glibenclamide on glycemic excursion and oxidative stress in type 2 diabetic patients inadequately controlled by metformin: a 24-week, randomized, open-label, parallel-group comparison. Wang JS; Lin SD; Lee WJ; Su SL; Lee IT; Tu ST; Tseng YH; Lin SY; Sheu WH Clin Ther; 2011 Dec; 33(12):1932-42. PubMed ID: 22078152 [TBL] [Abstract][Full Text] [Related]
4. A critical overview of the chemistry of copper-dependent low density lipoprotein oxidation: roles of lipid hydroperoxides, alpha-tocopherol, thiols, and ceruloplasmin. Burkitt MJ Arch Biochem Biophys; 2001 Oct; 394(1):117-35. PubMed ID: 11566034 [TBL] [Abstract][Full Text] [Related]
5. Differential effects of metformin and troglitazone on cardiovascular risk factors in patients with type 2 diabetes. Chu NV; Kong AP; Kim DD; Armstrong D; Baxi S; Deutsch R; Caulfield M; Mudaliar SR; Reitz R; Henry RR; Reaven PD Diabetes Care; 2002 Mar; 25(3):542-9. PubMed ID: 11874944 [TBL] [Abstract][Full Text] [Related]
6. Glucose enhancement of LDL oxidation is strictly metal ion dependent. Mowri HO; Frei B; Keaney JF Free Radic Biol Med; 2000 Nov; 29(9):814-24. PubMed ID: 11063907 [TBL] [Abstract][Full Text] [Related]
7. Oxidation of low density lipoprotein by thiols: superoxide-dependent and -independent mechanisms. Heinecke JW; Kawamura M; Suzuki L; Chait A J Lipid Res; 1993 Dec; 34(12):2051-61. PubMed ID: 8301226 [TBL] [Abstract][Full Text] [Related]
8. Interrelation between compensation of carbohydrate metabolism and severity of manifestations of oxidative stress in type II diabetes mellitus. Nedosugova LV; Lankin VZ; Balabolkin MI; Konovalova GG; Lisina MO; Antonova KV; Tikhaze AK; Belenkov YN Bull Exp Biol Med; 2003 Aug; 136(2):132-4. PubMed ID: 14631491 [TBL] [Abstract][Full Text] [Related]
9. Glycation and glycoxidation of low-density lipoproteins by glucose and low-molecular mass aldehydes. Formation of modified and oxidized particles. Knott HM; Brown BE; Davies MJ; Dean RT Eur J Biochem; 2003 Sep; 270(17):3572-82. PubMed ID: 12919321 [TBL] [Abstract][Full Text] [Related]
10. Improved glucose control decreases the interaction of plasma low-density lipoproteins with arterial proteoglycans. Edwards IJ; Terry JG; Bell-Farrow AD; Cefalu WT Metabolism; 2002 Oct; 51(10):1223-9. PubMed ID: 12370838 [TBL] [Abstract][Full Text] [Related]
11. Effect of fast-food Mediterranean-type diet on human plasma oxidation. Aronis P; Antonopoulou S; Karantonis HC; Phenekos C; Tsoukatos DC J Med Food; 2007 Sep; 10(3):511-20. PubMed ID: 17887946 [TBL] [Abstract][Full Text] [Related]
12. Favorable effects of pioglitazone and metformin compared with gliclazide on lipoprotein subfractions in overweight patients with early type 2 diabetes. Lawrence JM; Reid J; Taylor GJ; Stirling C; Reckless JP Diabetes Care; 2004 Jan; 27(1):41-6. PubMed ID: 14693964 [TBL] [Abstract][Full Text] [Related]
13. Lack of effect on LDL oxidation and antioxidant status after improvement of metabolic control in type 2 diabetes. Oranje WA; Rondas-Colbers GJ; Swennen GN; Jansen H; Wolffenbuttel BH Diabetes Care; 1999 Dec; 22(12):2083-4. PubMed ID: 10587847 [No Abstract] [Full Text] [Related]
14. Pathophysiological concentrations of glucose promote oxidative modification of low density lipoprotein by a superoxide-dependent pathway. Kawamura M; Heinecke JW; Chait A J Clin Invest; 1994 Aug; 94(2):771-8. PubMed ID: 8040332 [TBL] [Abstract][Full Text] [Related]
15. Lipid effects of glyburide/metformin tablets in patients with type 2 diabetes mellitus with poor glycemic control and dyslipidemia in an open-label extension study. Dailey GE; Mohideen P; Fiedorek FT Clin Ther; 2002 Sep; 24(9):1426-38. PubMed ID: 12380634 [TBL] [Abstract][Full Text] [Related]
16. In vitro and in vivo antioxidant properties of gliclazide. O'Brien RC; Luo M; Balazs N; Mercuri J J Diabetes Complications; 2000; 14(4):201-6. PubMed ID: 11004429 [TBL] [Abstract][Full Text] [Related]
17. [The peroxidation of human glycosylated low-density lipoproteins is mediated by the superoxide radical: the protective effects of superoxide dismutase]. Napoli C; Ambrosio G; Palumbo G; Chiariello P; Duilio C; Chiariello M Cardiologia; 1994 May; 39(5):345-52. PubMed ID: 8087816 [TBL] [Abstract][Full Text] [Related]
18. Glucose accelerates copper- and ceruloplasmin-induced oxidation of low-density lipoprotein and whole serum. Leoni V; Albertini R; Passi A; Abuja PM; Borroni P; D'Eril GM; De Luca G Free Radic Res; 2002 May; 36(5):521-9. PubMed ID: 12150540 [TBL] [Abstract][Full Text] [Related]
19. Susceptibility of low- and high-density lipoproteins from diabetic subjects to in vitro oxidative modification. Julier K; Mackness MI; Dean JD; Durrington PN Diabet Med; 1999 May; 16(5):415-23. PubMed ID: 10342342 [TBL] [Abstract][Full Text] [Related]
20. Why is glycated LDL more sensitive to oxidation than native LDL? A comparative study. Sobal G; Menzel J; Sinzinger H Prostaglandins Leukot Essent Fatty Acids; 2000 Oct; 63(4):177-86. PubMed ID: 11049692 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]