These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

302 related articles for article (PubMed ID: 22856464)

  • 41. Let's chat: Communication between electroactive microorganisms.
    Paquete CM; Rosenbaum MA; Bañeras L; Rotaru AE; Puig S
    Bioresour Technol; 2022 Mar; 347():126705. PubMed ID: 35065228
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Structures, Compositions, and Activities of Live Shewanella Biofilms Formed on Graphite Electrodes in Electrochemical Flow Cells.
    Kitayama M; Koga R; Kasai T; Kouzuma A; Watanabe K
    Appl Environ Microbiol; 2017 Sep; 83(17):. PubMed ID: 28625998
    [TBL] [Abstract][Full Text] [Related]  

  • 43. In situ monitoring of Shewanella oneidensis MR-1 biofilm growth on gold electrodes by using a Pt microelectrode.
    Bao H; Zheng Z; Yang B; Liu D; Li F; Zhang X; Li Z; Lei L
    Bioelectrochemistry; 2016 Jun; 109():95-100. PubMed ID: 26850925
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Electrokinetic analyses in biofilm anodes: Ohmic conduction of extracellular electron transfer.
    Lee HS
    Bioresour Technol; 2018 May; 256():509-514. PubMed ID: 29478785
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Facilitated extracellular electron transfer of Geobacter sulfurreducens biofilm with in situ formed gold nanoparticles.
    Chen M; Zhou X; Liu X; Zeng RJ; Zhang F; Ye J; Zhou S
    Biosens Bioelectron; 2018 Jun; 108():20-26. PubMed ID: 29494884
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Microbial extracellular electron transfer and strategies for engineering electroactive microorganisms.
    Zhao J; Li F; Cao Y; Zhang X; Chen T; Song H; Wang Z
    Biotechnol Adv; 2021 Dec; 53():107682. PubMed ID: 33326817
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Continuous shear stress alters metabolism, mass-transport, and growth in electroactive biofilms independent of surface substrate transport.
    Jones AD; Buie CR
    Sci Rep; 2019 Feb; 9(1):2602. PubMed ID: 30796283
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Biocathodic performance of bioelectrochemical systems operated at low temperature.
    Zhang G; Su F; Jiao Y; Chen Q; Lee DJ
    Bioresour Technol; 2020 Aug; 310():123463. PubMed ID: 32387978
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Biosynthetic graphene enhanced extracellular electron transfer for high performance anode in microbial fuel cell.
    Zhou S; Lin M; Zhuang Z; Liu P; Chen Z
    Chemosphere; 2019 Oct; 232():396-402. PubMed ID: 31158634
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Electrochemical communication between microbial cells and electrodes via osmium redox systems.
    Hasan K; Patil SA; Leech D; Hägerhäll C; Gorton L
    Biochem Soc Trans; 2012 Dec; 40(6):1330-5. PubMed ID: 23176477
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Molecular mechanisms of microbial transmembrane electron transfer of electrochemically active bacteria.
    Xiao X; Yu HQ
    Curr Opin Chem Biol; 2020 Dec; 59():104-110. PubMed ID: 32712559
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Anode potentials regulate Geobacter biofilms: New insights from the composition and spatial structure of extracellular polymeric substances.
    Yang G; Huang L; Yu Z; Liu X; Chen S; Zeng J; Zhou S; Zhuang L
    Water Res; 2019 Aug; 159():294-301. PubMed ID: 31102858
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Disparity of Cytochrome Utilization in Anodic and Cathodic Extracellular Electron Transfer Pathways of
    Heidary N; Kornienko N; Kalathil S; Fang X; Ly KH; Greer HF; Reisner E
    J Am Chem Soc; 2020 Mar; 142(11):5194-5203. PubMed ID: 32066233
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Photosynthetic Microbial Fuel Cells.
    Laureanti JA; Jones AK
    Adv Biochem Eng Biotechnol; 2016; 158():159-175. PubMed ID: 28070595
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Significant enhancement of electron transfer from Shewanella oneidensis using a porous N-doped carbon cloth in a bioelectrochemical system.
    Yuan HR; Deng LF; Qian X; Wang LF; Li DN; Chen Y; Yuan Y
    Sci Total Environ; 2019 May; 665():882-889. PubMed ID: 30790761
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Direct electron transfer from electrode to electrochemically active bacteria in a bioelectrochemical dechlorination system.
    Liu D; Lei L; Yang B; Yu Q; Li Z
    Bioresour Technol; 2013 Nov; 148():9-14. PubMed ID: 24035815
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A scalable model of fluid flow, substrate removal and current production in microbial fuel cells.
    Day JR; Heidrich ES; Wood TS
    Chemosphere; 2022 Mar; 291(Pt 1):132686. PubMed ID: 34740702
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Electroactive microorganisms in bioelectrochemical systems.
    Logan BE; Rossi R; Ragab A; Saikaly PE
    Nat Rev Microbiol; 2019 May; 17(5):307-319. PubMed ID: 30846876
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Anode-biofilm electron transfer behavior and wastewater treatment under different operational modes of bioelectrochemical system.
    Wu B; Feng C; Huang L; Lv Z; Xie D; Wei C
    Bioresour Technol; 2014 Apr; 157():305-9. PubMed ID: 24584100
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Online-monitoring of biofilm formation using nanostructured electrode surfaces.
    Sedki M; Hassan RYA; Andreescu S; El-Sherbiny IM
    Mater Sci Eng C Mater Biol Appl; 2019 Jul; 100():178-185. PubMed ID: 30948051
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.