These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
125 related articles for article (PubMed ID: 22856883)
1. A common genetic basis to the origin of the leaf economics spectrum and metabolic scaling allometry. Vasseur F; Violle C; Enquist BJ; Granier C; Vile D Ecol Lett; 2012 Oct; 15(10):1149-57. PubMed ID: 22856883 [TBL] [Abstract][Full Text] [Related]
2. Venation networks and the origin of the leaf economics spectrum. Blonder B; Violle C; Bentley LP; Enquist BJ Ecol Lett; 2011 Feb; 14(2):91-100. PubMed ID: 21073643 [TBL] [Abstract][Full Text] [Related]
3. Adaptive diversification of growth allometry in the plant Vasseur F; Exposito-Alonso M; Ayala-Garay OJ; Wang G; Enquist BJ; Vile D; Violle C; Weigel D Proc Natl Acad Sci U S A; 2018 Mar; 115(13):3416-3421. PubMed ID: 29540570 [TBL] [Abstract][Full Text] [Related]
4. The evolution of the worldwide leaf economics spectrum. Donovan LA; Maherali H; Caruso CM; Huber H; de Kroon H Trends Ecol Evol; 2011 Feb; 26(2):88-95. PubMed ID: 21196061 [TBL] [Abstract][Full Text] [Related]
5. Quantitative trait loci mapping of floral and leaf morphology traits in Arabidopsis thaliana: evidence for modular genetic architecture. Juenger T; Pérez-Pérez JM; Bernal S; Micol JL Evol Dev; 2005; 7(3):259-71. PubMed ID: 15876198 [TBL] [Abstract][Full Text] [Related]
6. Evolution of the leaf economics spectrum in herbs: Evidence from environmental divergences in leaf physiology across Helianthus (Asteraceae). Mason CM; Donovan LA Evolution; 2015 Oct; 69(10):2705-20. PubMed ID: 26339995 [TBL] [Abstract][Full Text] [Related]
8. Gene, phenotype and function: GLABROUS1 and resistance to herbivory in natural populations of Arabidopsis lyrata. Kivimäki M; Kärkkäinen K; Gaudeul M; Løe G; Agren J Mol Ecol; 2007 Jan; 16(2):453-62. PubMed ID: 17217357 [TBL] [Abstract][Full Text] [Related]
9. The genetic basis for differences in leaf form between Arabidopsis thaliana and its wild relative Cardamine hirsuta. Hay A; Tsiantis M Nat Genet; 2006 Aug; 38(8):942-7. PubMed ID: 16823378 [TBL] [Abstract][Full Text] [Related]
10. Allometry of cells and tissues within leaves. John GP; Scoffoni C; Sack L Am J Bot; 2013 Oct; 100(10):1936-48. PubMed ID: 24070860 [TBL] [Abstract][Full Text] [Related]
11. A general integrative model for scaling plant growth, carbon flux, and functional trait spectra. Enquist BJ; Kerkhoff AJ; Stark SC; Swenson NG; McCarthy MC; Price CA Nature; 2007 Sep; 449(7159):218-22. PubMed ID: 17851525 [TBL] [Abstract][Full Text] [Related]
13. ASYMMETRIC LEAVES1, an Arabidopsis gene that is involved in the control of cell differentiation in leaves. Sun Y; Zhou Q; Zhang W; Fu Y; Huang H Planta; 2002 Mar; 214(5):694-702. PubMed ID: 11882937 [TBL] [Abstract][Full Text] [Related]
14. To what extent is altitudinal variation of functional traits driven by genetic adaptation in European oak and beech? Bresson CC; Vitasse Y; Kremer A; Delzon S Tree Physiol; 2011 Nov; 31(11):1164-74. PubMed ID: 21908436 [TBL] [Abstract][Full Text] [Related]
15. Lessons from a search for leaf mutants in Arabidopsis thaliana. Pérez-Pérez JM; Candela H; Robles P; Quesada V; Ponce MR; Micol JL Int J Dev Biol; 2009; 53(8-10):1623-34. PubMed ID: 19247929 [TBL] [Abstract][Full Text] [Related]
16. Scaling mass and morphology in leaves: an extension of the WBE model. Price CA; Enquist BJ Ecology; 2007 May; 88(5):1132-41. PubMed ID: 17536400 [TBL] [Abstract][Full Text] [Related]