These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

342 related articles for article (PubMed ID: 22857130)

  • 21. Life cycle carbon footprint of shale gas: review of evidence and implications.
    Weber CL; Clavin C
    Environ Sci Technol; 2012 Jun; 46(11):5688-95. PubMed ID: 22545623
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A life cycle assessment of coal-fired thermal power plants with post-combustion control techniques: an India scenario.
    Malode S; Prakash R; Mohanta JC
    Environ Sci Pollut Res Int; 2023 Aug; 30(39):90639-90655. PubMed ID: 37462868
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Energetic valorization of wood waste: estimation of the reduction in CO2 emissions.
    Vanneste J; Van Gerven T; Vander Putten E; Van der Bruggen B; Helsen L
    Sci Total Environ; 2011 Sep; 409(19):3595-602. PubMed ID: 21719072
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Impacts of carbon markets and subsidies on carbon capture and storage retrofitting of existing coal-fired units in China.
    Li K; Yang J; Wei Y
    J Environ Manage; 2023 Jan; 326(Pt B):116824. PubMed ID: 36442336
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Moving to a low-carbon future: perspectives on nuclear and alternative power sources.
    Morgan MG
    Health Phys; 2007 Nov; 93(5):568-70. PubMed ID: 18049235
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Life cycle assessment of combustion-based electricity generation technologies integrated with carbon capture and storage: A review.
    Wang Y; Pan Z; Zhang W; Borhani TN; Li R; Zhang Z
    Environ Res; 2022 May; 207():112219. PubMed ID: 34656638
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Ultra-Low Carbon Emissions from Coal-Fired Power Plants through Bio-Oil Co-Firing and Biochar Sequestration.
    Dang Q; Mba Wright M; Brown RC
    Environ Sci Technol; 2015 Dec; 49(24):14688-95. PubMed ID: 26545153
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The United States Department of Energy's Regional Carbon Sequestration Partnerships program: a collaborative approach to carbon management.
    Litynski JT; Klara SM; McIlvried HG; Srivastava RD
    Environ Int; 2006 Jan; 32(1):128-44. PubMed ID: 16054694
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Terrestrial carbon disturbance from mountaintop mining increases lifecycle emissions for clean coal.
    Fox JF; Campbell JE
    Environ Sci Technol; 2010 Mar; 44(6):2144-9. PubMed ID: 20141186
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Investigation of carbon footprint effect of renewable power plants regarding energy production: A case study of a city in Turkey.
    Kerem A
    J Air Waste Manag Assoc; 2022 Mar; 72(3):294-307. PubMed ID: 35030055
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Sourcing of Steam and Electricity for Carbon Capture Retrofits.
    Supekar SD; Skerlos SJ
    Environ Sci Technol; 2017 Nov; 51(21):12908-12917. PubMed ID: 28968494
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Net air emissions from electric vehicles: the effect of carbon price and charging strategies.
    Peterson SB; Whitacre JF; Apt J
    Environ Sci Technol; 2011 Mar; 45(5):1792-7. PubMed ID: 21309508
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Baseload coal investment decisions under uncertain carbon legislation.
    Bergerson JA; Lave LB
    Environ Sci Technol; 2007 May; 41(10):3431-6. PubMed ID: 17547159
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Early public impressions of terrestrial carbon capture and storage in a coal-intensive state.
    Carley SR; Krause RM; Warren DC; Rupp JA; Graham JD
    Environ Sci Technol; 2012 Jul; 46(13):7086-93. PubMed ID: 22681614
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A Techno-Economic Assessment of Hybrid Cooling Systems for Coal- and Natural-Gas-Fired Power Plants with and without Carbon Capture and Storage.
    Zhai H; Rubin ES
    Environ Sci Technol; 2016 Apr; 50(7):4127-34. PubMed ID: 26967583
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Life cycle energy and greenhouse gas emissions for an ethanol production process based on blue-green algae.
    Luo D; Hu Z; Choi DG; Thomas VM; Realff MJ; Chance RR
    Environ Sci Technol; 2010 Nov; 44(22):8670-7. PubMed ID: 20968295
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Assessment of potential, cost, and environmental benefits of CCS-EWR technology for coal-fired power plants in Yellow River Basin of China.
    Xu M; Zhang X; Shen S; Wei S; Fan JL
    J Environ Manage; 2021 Aug; 292():112717. PubMed ID: 34015611
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Two-in-one fuel combining sugar cane with low rank coal and its CO₂ reduction effects in pulverized-coal power plants.
    Lee DW; Bae JS; Lee YJ; Park SJ; Hong JC; Lee BH; Jeon CH; Choi YC
    Environ Sci Technol; 2013 Feb; 47(3):1704-10. PubMed ID: 23286316
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Viability of Carbon Capture and Sequestration Retrofits for Existing Coal-Fired Power Plants under an Emission Trading Scheme.
    Talati S; Zhai H; Morgan MG
    Environ Sci Technol; 2016 Dec; 50(23):12567-12574. PubMed ID: 27792308
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mapping the economy of coal power plants retrofitted with post-combustion and biomass co-firing carbon capture in China.
    Yuan J; Wang Y; Zhang W; Zhang J
    Environ Sci Pollut Res Int; 2023 Apr; 30(16):47438-47454. PubMed ID: 36738409
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.