These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

343 related articles for article (PubMed ID: 22857130)

  • 41. Gasification of coal and biomass as a net carbon-negative power source for environment-friendly electricity generation in China.
    Lu X; Cao L; Wang H; Peng W; Xing J; Wang S; Cai S; Shen B; Yang Q; Nielsen CP; McElroy MB
    Proc Natl Acad Sci U S A; 2019 Apr; 116(17):8206-8213. PubMed ID: 30962380
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Computer simulation of energy use, greenhouse gas emissions, and process economics of the fluid milk process.
    Tomasula PM; Yee WC; McAloon AJ; Nutter DW; Bonnaillie LM
    J Dairy Sci; 2013 May; 96(5):3350-68. PubMed ID: 23522681
    [TBL] [Abstract][Full Text] [Related]  

  • 43. An optimization model for carbon capture & storage/utilization vs. carbon trading: A case study of fossil-fired power plants in Turkey.
    Ağralı S; Üçtuğ FG; Türkmen BA
    J Environ Manage; 2018 Jun; 215():305-315. PubMed ID: 29574208
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Life cycle inventory of CO2 in an enhanced oil recovery system.
    Jaramillo P; Griffin WM; McCoy ST
    Environ Sci Technol; 2009 Nov; 43(21):8027-32. PubMed ID: 19924918
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Coal with Carbon Capture and Sequestration is not as Land Use Efficient as Solar Photovoltaic Technology for Climate Neutral Electricity Production.
    Groesbeck JG; Pearce JM
    Sci Rep; 2018 Sep; 8(1):13476. PubMed ID: 30194324
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The climate impacts of bioenergy systems depend on market and regulatory policy contexts.
    Lemoine DM; Plevin RJ; Cohn AS; Jones AD; Brandt AR; Vergara SE; Kammen DM
    Environ Sci Technol; 2010 Oct; 44(19):7347-50. PubMed ID: 20873876
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Marginal emissions factors for the U.S. electricity system.
    Siler-Evans K; Azevedo IL; Morgan MG
    Environ Sci Technol; 2012 May; 46(9):4742-8. PubMed ID: 22486733
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Room-temperature ionic liquids and composite materials: platform technologies for CO(2) capture.
    Bara JE; Camper DE; Gin DL; Noble RD
    Acc Chem Res; 2010 Jan; 43(1):152-9. PubMed ID: 19795831
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Identifying/Quantifying Environmental Trade-offs Inherent in GHG Reduction Strategies for Coal-Fired Power.
    Schivley G; Ingwersen WW; Marriott J; Hawkins TR; Skone TJ
    Environ Sci Technol; 2015 Jul; 49(13):7562-70. PubMed ID: 26001040
    [TBL] [Abstract][Full Text] [Related]  

  • 50. SunShot solar power reduces costs and uncertainty in future low-carbon electricity systems.
    Mileva A; Nelson JH; Johnston J; Kammen DM
    Environ Sci Technol; 2013 Aug; 47(16):9053-60. PubMed ID: 23865424
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Environmental impact of coal industry and thermal power plants in India.
    Mishra UC
    J Environ Radioact; 2004; 72(1-2):35-40. PubMed ID: 15162853
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Assessing the environmental externalities for biomass- and coal-fired electricity generation in China: A supply chain perspective.
    Wang C; Zhang L; Zhou P; Chang Y; Zhou D; Pang M; Yin H
    J Environ Manage; 2019 Sep; 246():758-767. PubMed ID: 31228689
    [TBL] [Abstract][Full Text] [Related]  

  • 53. SWITCH-China: A Systems Approach to Decarbonizing China's Power System.
    He G; Avrin AP; Nelson JH; Johnston J; Mileva A; Tian J; Kammen DM
    Environ Sci Technol; 2016 Jun; 50(11):5467-73. PubMed ID: 27157000
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Radiative forcing due to anthropogenic greenhouse gas emissions from Finland: methods for estimating forcing of a country or an activity.
    Monni S; Korhonen R; Savolainen I
    Environ Manage; 2003 Mar; 31(3):401-11. PubMed ID: 12592455
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Exploring the role of natural gas power plants with carbon capture and storage as a bridge to a low-carbon future.
    Babaee S; Loughlin DH
    Clean Technol Environ Policy; 2017 Dec; 20(2):379-391. PubMed ID: 32461751
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Life cycle greenhouse gas emissions and freshwater consumption of Marcellus shale gas.
    Laurenzi IJ; Jersey GR
    Environ Sci Technol; 2013 May; 47(9):4896-903. PubMed ID: 23548112
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Co-gasification of solid waste and lignite - a case study for Western Macedonia.
    Koukouzas N; Katsiadakis A; Karlopoulos E; Kakaras E
    Waste Manag; 2008; 28(7):1263-75. PubMed ID: 17631995
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Bury or burn North America MSW? LCAs provide answers for climate impacts & carbon neutral power potential.
    Morris J
    Environ Sci Technol; 2010 Oct; 44(20):7944-9. PubMed ID: 20866062
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Life-cycle greenhouse gas emissions of shale gas, natural gas, coal, and petroleum.
    Burnham A; Han J; Clark CE; Wang M; Dunn JB; Palou-Rivera I
    Environ Sci Technol; 2012 Jan; 46(2):619-27. PubMed ID: 22107036
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Emissions of mercury and other trace elements from coal-fired power plants in Japan.
    Ito S; Yokoyama T; Asakura K
    Sci Total Environ; 2006 Sep; 368(1):397-402. PubMed ID: 16225907
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.