These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 22857256)

  • 1. Reinforced wind turbine blades--an environmental life cycle evaluation.
    Merugula L; Khanna V; Bakshi BR
    Environ Sci Technol; 2012 Sep; 46(17):9785-92. PubMed ID: 22857256
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Wind power electricity: the bigger the turbine, the greener the electricity?
    Caduff M; Huijbregts MA; Althaus HJ; Koehler A; Hellweg S
    Environ Sci Technol; 2012 May; 46(9):4725-33. PubMed ID: 22475003
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Specification of Environmental Consequences of the Life Cycle of Selected Post-Production Waste of Wind Power Plants Blades.
    Piotrowska K; Piasecka I
    Materials (Basel); 2021 Aug; 14(17):. PubMed ID: 34501064
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Occupational exposures to styrene vapor in a manufacturing plant for fiber-reinforced composite wind turbine blades.
    Hammond D; Garcia A; Feng HA
    Ann Occup Hyg; 2011 Jul; 55(6):591-600. PubMed ID: 21597049
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Wind energy.
    Leithead WE
    Philos Trans A Math Phys Eng Sci; 2007 Apr; 365(1853):957-70. PubMed ID: 17272245
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of global onshore wind energy potential and generation costs.
    Zhou Y; Luckow P; Smith SJ; Clarke L
    Environ Sci Technol; 2012 Jul; 46(14):7857-64. PubMed ID: 22715929
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Estimation of glass and carbon fiber reinforced plastic waste from end-of-life rotor blades of wind power plants within the European Union.
    Sommer V; Stockschläder J; Walther G
    Waste Manag; 2020 Sep; 115():83-94. PubMed ID: 32731137
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of Graphene Reinforcement on Static Bending, Free Vibration, and Torsion of Wind Turbine Blades.
    Kim HJ; Cho JR
    Materials (Basel); 2024 Jul; 17(13):. PubMed ID: 38998411
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Manufacture of High-Performance Tidal Turbine Blades Using Advanced Composite Manufacturing Technologies.
    Finnegan W; Allen R; Glennon C; Maguire J; Flanagan M; Flanagan T
    Appl Compos Mater (Dordr); 2021; 28(6):2061-2086. PubMed ID: 35035103
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Novel Engineered Materials: Epoxy Resin Nanocomposite Reinforced with Modified Epoxidized Natural Rubber and Fibers for Low Speed Wind Turbine Blades.
    Kasagepongsan C; Suchat S
    Polymers (Basel); 2021 Aug; 13(16):. PubMed ID: 34451299
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In-Depth Study on the Application of a Graphene Platelet-reinforced Composite to Wind Turbine Blades.
    Kim HJ; Cho JR
    Materials (Basel); 2024 Aug; 17(16):. PubMed ID: 39203084
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Environmental impacts of carbon fiber production and decarbonization performance in wind turbine blades.
    Zhang S; Gan J; Lv J; Shen C; Xu C; Li F
    J Environ Manage; 2024 Feb; 351():119893. PubMed ID: 38157576
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Visualization and analysis of vortex-turbine intersections in wind farms.
    Shafii S; Obermaier H; Linn R; Koo E; Hlawitschka M; Garth C; Hamann B; Joy KI
    IEEE Trans Vis Comput Graph; 2013 Sep; 19(9):1579-91. PubMed ID: 23846101
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Application of hybrid life cycle approaches to emerging energy technologies--the case of wind power in the UK.
    Wiedmann TO; Suh S; Feng K; Lenzen M; Acquaye A; Scott K; Barrett JR
    Environ Sci Technol; 2011 Jul; 45(13):5900-7. PubMed ID: 21649442
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Numerical modeling of wind turbine aerodynamic noise in the time domain.
    Lee S; Lee S; Lee S
    J Acoust Soc Am; 2013 Feb; 133(2):EL94-100. PubMed ID: 23363200
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Control the System and Environment of Post-Production Wind Turbine Blade Waste Using Life Cycle Models. Part 1. Environmental Transformation Models.
    Piasecka I; Bałdowska-Witos P; Flizikowski J; Piotrowska K; Tomporowski A
    Polymers (Basel); 2020 Aug; 12(8):. PubMed ID: 32824077
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Wind Turbine Blades Using Recycled Carbon Fibers: An Environmental Assessment.
    Upadhyayula VKK; Gadhamshetty V; Athanassiadis D; Tysklind M; Meng F; Pan Q; Cullen JM; Yacout DMM
    Environ Sci Technol; 2022 Jan; 56(2):1267-1277. PubMed ID: 34981927
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Power quality control of an autonomous wind-diesel power system based on hybrid intelligent controller.
    Ko HS; Lee KY; Kang MJ; Kim HC
    Neural Netw; 2008 Dec; 21(10):1439-46. PubMed ID: 18996680
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exploratory Study on the Application of Graphene Platelet-Reinforced Composite to Wind Turbine Blade.
    Kim HJ; Cho JR
    Polymers (Basel); 2024 Jul; 16(14):. PubMed ID: 39065319
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Delamination Fracture Behavior of Unidirectional Carbon Reinforced Composites Applied to Wind Turbine Blades.
    Boyano A; Lopez-Guede JM; Torre-Tojal L; Fernandez-Gamiz U; Zulueta E; Mujika F
    Materials (Basel); 2021 Jan; 14(3):. PubMed ID: 33513957
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.