These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 2285763)

  • 1. A model for neuronal oscillations in the visual cortex. 2. Phase description of the feature dependent synchronization.
    Schuster HG; Wagner P
    Biol Cybern; 1990; 64(1):83-5. PubMed ID: 2285763
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A model for feature linking via collective oscillations in the primary visual cortex.
    Chawanya T; Aoyagi T; Nishikawa I; Okuda K; Kuramoto Y
    Biol Cybern; 1993; 68(6):483-90. PubMed ID: 8324056
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A model for neuronal oscillations in the visual cortex. 1. Mean-field theory and derivation of the phase equations.
    Schuster HG; Wagner P
    Biol Cybern; 1990; 64(1):77-82. PubMed ID: 2285762
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synchronized oscillations in the visual cortex--a synergetic model.
    Tass P; Haken H
    Biol Cybern; 1996 Jan; 74(1):31-9. PubMed ID: 8573651
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Selective visual attention in a neurocomputational model of phase oscillators.
    Wu Z; Guo A
    Biol Cybern; 1999 Mar; 80(3):205-14. PubMed ID: 10192903
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Orientation tuning and synchronization in the hypercolumn model.
    Lee SG; Tanaka S; Kim S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Jan; 69(1 Pt 1):011914. PubMed ID: 14995654
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A biologically motivated and analytically soluble model of collective oscillations in the cortex. I. Theory of weak locking.
    Gerstner W; Ritz R; van Hemmen JL
    Biol Cybern; 1993; 68(4):363-74. PubMed ID: 8386552
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of synchronization between two modules of pulse neural networks with excitatory and inhibitory connections.
    Kanamaru T
    Neural Comput; 2006 May; 18(5):1111-31. PubMed ID: 16595059
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Two types of neuronal synchrony in monkey striate cortex.
    Krüger J; Mayer M
    Biol Cybern; 1990; 64(2):135-40. PubMed ID: 2291901
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neural mechanisms of visual feature grouping.
    Eckhorn R
    Neurol Neurochir Pol; 2000; 34(2 Suppl):27-42. PubMed ID: 10962735
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gating of local network signals appears as stimulus-dependent activity envelopes in striate cortex.
    Schiff ND; Purpura KP; Victor JD
    J Neurophysiol; 1999 Nov; 82(5):2182-96. PubMed ID: 10561398
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Different types of signal coupling in the visual cortex related to neural mechanisms of associative processing and perception.
    Eckhorn R; Gail AM; Bruns A; Gabriel A; Al-Shaikhli B; Saam M
    IEEE Trans Neural Netw; 2004 Sep; 15(5):1039-52. PubMed ID: 15484881
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oscillatory network with self-organized dynamical connections for synchronization-based image segmentation.
    Kuzmina M; Manykin E; Surina I
    Biosystems; 2004; 76(1-3):43-53. PubMed ID: 15351129
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A biologically motivated and analytically soluble model of collective oscillations in the cortex. II. Application to binding and pattern segmentation.
    Ritz R; Gerstner W; Fuentes U; van Hemmen JL
    Biol Cybern; 1994; 71(4):349-58. PubMed ID: 7948226
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rapid synchronization through fast threshold modulation.
    Somers D; Kopell N
    Biol Cybern; 1993; 68(5):393-407. PubMed ID: 8476980
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sparse recurrent excitatory connectivity in the microcircuit of the adult mouse and human cortex.
    Seeman SC; Campagnola L; Davoudian PA; Hoggarth A; Hage TA; Bosma-Moody A; Baker CA; Lee JH; Mihalas S; Teeter C; Ko AL; Ojemann JG; Gwinn RP; Silbergeld DL; Cobbs C; Phillips J; Lein E; Murphy G; Koch C; Zeng H; Jarsky T
    Elife; 2018 Sep; 7():. PubMed ID: 30256194
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A neural network model for the emergence of grating cells.
    Brunner K; Kussinger M; Stetter M; Lang EW
    Biol Cybern; 1998 May; 78(5):389-97. PubMed ID: 9691266
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computational modeling of the dynamics of simple and complex cells in primary visual cortex.
    Tao L; Cai D
    Sheng Li Xue Bao; 2011 Oct; 63(5):401-11. PubMed ID: 22002231
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An architectural hypothesis for direction selectivity in the visual cortex: the role of spatially asymmetric intracortical inhibition.
    Sabatini SP; Solari F
    Biol Cybern; 1999 Mar; 80(3):171-83. PubMed ID: 10192900
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Input-dependent frequency modulation of cortical gamma oscillations shapes spatial synchronization and enables phase coding.
    Lowet E; Roberts M; Hadjipapas A; Peter A; van der Eerden J; De Weerd P
    PLoS Comput Biol; 2015 Feb; 11(2):e1004072. PubMed ID: 25679780
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.