BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 2285771)

  • 41. Three-dimensional analysis of the thoracic aorta microscopic deformation during intraluminal pressurization.
    Sugita S; Kato M; Wataru F; Nakamura M
    Biomech Model Mechanobiol; 2020 Feb; 19(1):147-157. PubMed ID: 31297645
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The static elastic properties and chemical composition of the rat aorta in spontaneously occurring and experimentally induced hypertension: the effect of an anti-hypertensive drug.
    Greenwald SE; Berry CL; Ramsey RE
    Br J Exp Pathol; 1985 Dec; 66(6):633-42. PubMed ID: 4084447
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Effect of smooth muscle activity on the static and dynamic elastic properties of the rabbit carotid artery.
    Greenwald SE; Newman DL; Denyer HT
    Cardiovasc Res; 1982 Feb; 16(2):86-94. PubMed ID: 7074669
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Experimental foundation for in vivo measurement of the elasticity of the aorta in computed tomography angiography.
    Schlicht MS; Khanafer K; Duprey A; Cronin P; Berguer R
    Eur J Vasc Endovasc Surg; 2013 Oct; 46(4):447-52. PubMed ID: 23932205
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Biomechanical and morphometric properties of the arterial wall referenced to the zero-stress state in experimental diabetes.
    Zhao J; Lu X; Zhuang F; Gregersen H
    Biorheology; 2000; 37(5-6):385-400. PubMed ID: 11204544
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Segmental aortic wall stiffness from intravascular ultrasound at normal and subnormal aortic pressure in pigs.
    Slørdahl SA; Piene H; Linker DT; Vik A
    Acta Physiol Scand; 1991 Nov; 143(3):227-32. PubMed ID: 1772029
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Force-velocity characteristics and active tension in relation to content and orientation of smooth muscle cells in aortas from normotensive and spontaneous hypertensive rats.
    Arner A; Uvelius B
    Circ Res; 1982 Jun; 50(6):812-21. PubMed ID: 7083482
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Mechanical properties of rat middle cerebral arteries with and without myogenic tone.
    Coulson RJ; Cipolla MJ; Vitullo L; Chesler NC
    J Biomech Eng; 2004 Feb; 126(1):76-81. PubMed ID: 15171132
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Identification of elastic properties of homogeneous, orthotropic vascular segments in distension.
    Vorp DA; Rajagopal KR; Smolinski PJ; Borovetz HS
    J Biomech; 1995 May; 28(5):501-12. PubMed ID: 7775487
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Aortic wall properties in normotensive and hypertensive rats of various ages in vivo.
    van Gorp AW; van Ingen Schenau DS; Hoeks AP; Struijker Boudier HA; Reneman RS; De Mey JG
    Hypertension; 1995 Aug; 26(2):363-8. PubMed ID: 7635547
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Quantitative assessment of aortic elasticity with aging using velocity-vector imaging and its histologic correlation.
    Kim SA; Lee KH; Won HY; Park S; Chung JH; Jang Y; Ha JW
    Arterioscler Thromb Vasc Biol; 2013 Jun; 33(6):1306-12. PubMed ID: 23580144
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Layer-specific residual deformations and uniaxial and biaxial mechanical properties of thoracic porcine aorta.
    Peña JA; Martínez MA; Peña E
    J Mech Behav Biomed Mater; 2015 Oct; 50():55-69. PubMed ID: 26103440
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Towards a Clinical Implementation of Measuring the Elastic Modulus of the Aorta From Cardiac Computed Tomography Images.
    Shirakawa T; Kuratani T; Yoshitatsu M; Shimamura K; Fukui S; Kurata A; Koyama Y; Toda K; Fukuda I; Sawa Y
    IEEE Trans Biomed Eng; 2021 Dec; 68(12):3543-3553. PubMed ID: 33945468
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Stress and strain distribution in hypertensive and normotensive rat aorta considering residual strain.
    Matsumoto T; Hayashi K
    J Biomech Eng; 1996 Feb; 118(1):62-73. PubMed ID: 8833076
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Axial nonuniformity of geometric and mechanical properties of mouse aorta is increased during postnatal growth.
    Huang Y; Guo X; Kassab GS
    Am J Physiol Heart Circ Physiol; 2006 Feb; 290(2):H657-64. PubMed ID: 16172154
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Wall properties of the apolipoprotein E-deficient mouse aorta.
    Agianniotis A; Stergiopulos N
    Atherosclerosis; 2012 Aug; 223(2):314-20. PubMed ID: 22770991
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The static elastic properties of 45 human thoracic and 20 abdominal aortas in vitro and the parameters of a new model.
    Langewouters GJ; Wesseling KH; Goedhard WJ
    J Biomech; 1984; 17(6):425-35. PubMed ID: 6480618
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Deformation of the diastolic left ventricle. Nonlinear elastic effects.
    Janz RF; Grimm AF
    Biophys J; 1973 Jul; 13(7):689-704. PubMed ID: 4715584
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Contribution of elastin and collagen to the inflation response of the pig thoracic aorta: assessing elastin's role in mechanical homeostasis.
    Lillie MA; Armstrong TE; Gérard SG; Shadwick RE; Gosline JM
    J Biomech; 2012 Aug; 45(12):2133-41. PubMed ID: 22770359
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Effect of rapid cooling, frozen storage, and thawing on the passive viscoelastic properties and structure of the rat aorta.
    van der Laan KWF; Reesink KD; Lambrichts S; Bitsch NJJE; van der Taelen L; Foulquier S; Delhaas T; Spronck B; Giudici A
    J Biomech; 2024 Jun; 171():112190. PubMed ID: 38897049
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.