BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

73 related articles for article (PubMed ID: 22858115)

  • 1. Polyethylene glycol treatment promotes metabolic events associated with maize callus morphogenic competence.
    Lygin AV; Abdel-Rahman MM; Ulanov AV; Widholm JM; Lozovaya VV
    Phytochemistry; 2012 Oct; 82():46-55. PubMed ID: 22858115
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biochemical features of maize tissues with different capacities to regenerate plants.
    Lozovaya V; Ulanov A; Lygin A; Duncan D; Widholm J
    Planta; 2006 Nov; 224(6):1385-99. PubMed ID: 16941117
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metabolic effects of glyphosate change the capacity of maize culture to regenerate plants.
    Ulanov A; Lygin A; Duncan D; Widholm J; Lozovaya V
    J Plant Physiol; 2009 Jun; 166(9):978-87. PubMed ID: 19110340
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differential response of antioxidative systems of maize (Zea mays L.) roots cell walls to osmotic and heavy metal stress.
    Vuletić M; Hadži-Tašković Šukalović V; Marković K; Kravić N; Vučinić Ž; Maksimović V
    Plant Biol (Stuttg); 2014 Jan; 16(1):88-96. PubMed ID: 23573809
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Diferulic acids in the cell wall may contribute to the suppression of shoot growth in the first phase of salt stress in maize.
    Uddin MN; Hanstein S; Faust F; Eitenmüller PT; Pitann B; Schubert S
    Phytochemistry; 2014 Jun; 102():126-36. PubMed ID: 24661612
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The phenolic profile of maize primary cell wall changes in cellulose-deficient cell cultures.
    Mélida H; García-Angulo P; Alonso-Simón A; Alvarez JM; Acebes JL; Encina A
    Phytochemistry; 2010 Oct; 71(14-15):1684-9. PubMed ID: 20638694
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ectopic lignification in primary cellulose-deficient cell walls of maize cell suspension cultures.
    Mélida H; Largo-Gosens A; Novo-Uzal E; Santiago R; Pomar F; García P; García-Angulo P; Acebes JL; Álvarez J; Encina A
    J Integr Plant Biol; 2015 Apr; 57(4):357-72. PubMed ID: 25735403
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phenolics in maize genotypes differing in susceptibility to Gibberella stalk rot (Fusarium graminearum Schwabe).
    Santiago R; Reid LM; Arnason JT; Zhu X; Martinez N; Malvar RA
    J Agric Food Chem; 2007 Jun; 55(13):5186-93. PubMed ID: 17547419
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The role of cell wall phenolics during the early remodelling of cellulose-deficient maize cells.
    Martínez-Rubio R; Centeno ML; García-Angulo P; Álvarez JM; Acebes JL; Encina A
    Phytochemistry; 2020 Feb; 170():112219. PubMed ID: 31794882
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Divergent selection for ester-linked diferulates in maize pith stalk tissues. Effects on cell wall composition and degradability.
    Barros-Rios J; Malvar RA; Jung HJ; Bunzel M; Santiago R
    Phytochemistry; 2012 Nov; 83():43-50. PubMed ID: 22938993
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Covalent cross-linking of cell-wall polysaccharides through esterified diferulates as a maize resistance mechanism against corn borers.
    Barros-Rios J; Santiago R; Jung HJ; Malvar RA
    J Agric Food Chem; 2015 Mar; 63(8):2206-14. PubMed ID: 25619118
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Involvement of cell wall-bound phenolic acids in decrease in cell wall susceptibility to expansins during the cessation of rapid growth in internodes of floating rice.
    Sasayama D; Azuma T; Itoh K
    J Plant Physiol; 2011 Jan; 168(2):121-7. PubMed ID: 20650543
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Changes in phenolic concentrations during recurrent selection for resistance to the Mediterranean corn borer (Sesamia nonagrioides Lef.).
    Santiago R; Sandoya G; Butrón A; Barros J; Malvar RA
    J Agric Food Chem; 2008 Sep; 56(17):8017-22. PubMed ID: 18656924
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Initiation and regulation of water deficit-induced abscisic acid accumulation in maize leaves and roots: cellular volume and water relations.
    Jia W; Zhang J; Liang J
    J Exp Bot; 2001 Feb; 52(355):295-300. PubMed ID: 11283174
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Maize stem tissues: ferulate deposition in developing internode cell walls.
    Jung HJ
    Phytochemistry; 2003 Jul; 63(5):543-9. PubMed ID: 12809714
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Moderate ferulate and diferulate levels do not impede maize cell wall degradation by human intestinal microbiota.
    Funk C; Braune A; Grabber JH; Steinhart H; Bunzel M
    J Agric Food Chem; 2007 Mar; 55(6):2418-23. PubMed ID: 17319685
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intraprotoplasmic and wall-localised formation of arabinoxylan-bound diferulates and larger ferulate coupling-products in maize cell-suspension cultures.
    Fry SC; Willis SC; Paterson AE
    Planta; 2000 Oct; 211(5):679-92. PubMed ID: 11089681
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cell wall composition as a maize defense mechanism against corn borers.
    Barros-Rios J; Malvar RA; Jung HJ; Santiago R
    Phytochemistry; 2011 Apr; 72(4-5):365-71. PubMed ID: 21281952
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Relevance, structure and analysis of ferulic acid in maize cell walls.
    Bento-Silva A; Vaz Patto MC; do Rosário Bronze M
    Food Chem; 2018 Apr; 246():360-378. PubMed ID: 29291861
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Diferulate content of maize sheaths is associated with resistance to the Mediterranean corn borer Sesamia nonagrioides (Lepidoptera: Noctuidae).
    Santiago R; Butrón A; Reid LM; Arnason JT; Sandoya G; Souto XC; Malvar RA
    J Agric Food Chem; 2006 Nov; 54(24):9140-4. PubMed ID: 17117802
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.