These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

73 related articles for article (PubMed ID: 22858115)

  • 41. Browning-associated mechanisms of resistance to insects in corn callus tissue.
    Dowd PF; Norton RA
    J Chem Ecol; 1995 May; 21(5):583-600. PubMed ID: 24234252
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Metabolic profiling to determine the cause of the increased triphenyltetrazolium chloride reduction in mannitol-treated maize callus.
    Ulanov A; Widholm JM
    J Plant Physiol; 2010 Nov; 167(17):1423-31. PubMed ID: 20579767
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Phenolic metabolism and molecular mass distribution of polysaccharides in cellulose-deficient maize cells.
    de Castro M; Martínez-Rubio R; Acebes JL; Encina A; Fry SC; García-Angulo P
    J Integr Plant Biol; 2017 Jul; 59(7):475-495. PubMed ID: 28474461
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Methods for Determining Cell Wall-Bound Phenolics in Maize Stem Tissues.
    Santiago R; López-Malvar A; Souto C; Barros-Ríos J
    J Agric Food Chem; 2018 Feb; 66(5):1279-1284. PubMed ID: 29336154
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Changes in cinnamic acid derivatives associated with the habituation of maize cells to dichlobenil.
    Mélida H; Jesús Álvarez ; Acebes JL; Encina A; Fry SC
    Mol Plant; 2011 Sep; 4(5):869-78. PubMed ID: 21571813
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Antioxidant potential in
    Hajihashemi S; Rajabpoor S; Djalovic I
    Physiol Mol Biol Plants; 2018 Mar; 24(2):335-341. PubMed ID: 29515327
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Proline is not the primary determinant of chilling tolerance induced by mannitol or abscisic Acid in regenerable maize callus cultures.
    Duncan DR; Widholm JM
    Plant Physiol; 1991 Apr; 95(4):1284-7. PubMed ID: 16668125
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Involvement of Phenolic Esters in Cell Aggregation of Suspension-Cultured Rice Cells.
    Kato Y; Yamanouchi H; Hinata K; Ohsumi C; Hayashi T
    Plant Physiol; 1994 Jan; 104(1):147-152. PubMed ID: 12232068
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The novel herbicide oxaziclomefone inhibits cell expansion in maize cell cultures without affecting turgor pressure or wall acidification.
    O'Looney N; Fry SC
    New Phytol; 2005 Nov; 168(2):323-9. PubMed ID: 16219072
    [TBL] [Abstract][Full Text] [Related]  

  • 50. PEG Induces High Expression of the Cell Cycle Checkpoint Gene
    Elmaghrabi AM; Rogers HJ; Francis D; Ochatt SJ
    Front Plant Sci; 2017; 8():1479. PubMed ID: 28928753
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Increased induction of regenerable callus cultures from cultured kernels of the maize inbred FR27rhm.
    Duncan DR; Singletary GW; Below FE; Widholm JM
    Plant Cell Rep; 1989 Jun; 8(6):350-3. PubMed ID: 24233273
    [TBL] [Abstract][Full Text] [Related]  

  • 52. In vitro selection and characterization of polyethylene glycol (PEG) tolerant callus lines and regeneration of plantlets from the selected callus lines in sugarcane (Saccharum officinarum L.).
    Rao S; Ftz J
    Physiol Mol Biol Plants; 2013 Apr; 19(2):261-8. PubMed ID: 24431494
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Ferulic acid is bound to the primary cell walls of all gymnosperm families.
    Carnachan SM; Harris PJ
    Biochem Syst Ecol; 2000 Nov; 28(9):865-879. PubMed ID: 10913848
    [TBL] [Abstract][Full Text] [Related]  

  • 54. IAA Oxidase Inhibitors from Normal and Mutant Maize Plants.
    Gelinas D; Postlethwait SN
    Plant Physiol; 1969 Nov; 44(11):1553-9. PubMed ID: 16657240
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Incorporation of proline and aromatic amino acids into cell walls of maize coleoptiles.
    Carpita NC
    Plant Physiol; 1986 Mar; 80(3):660-6. PubMed ID: 16664681
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Convenient Preparation and Quantification of 5,5'-Diferulic Acid.
    Yamamoto H; Hoshino T; Uchiyama T
    Biosci Biotechnol Biochem; 1999; 63(2):390-4. PubMed ID: 27393064
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Cell wall remodeling promotes callus formation in poplar.
    Zhang G; Liu P; Zhang G; Yao X; Wang X; Zhang Y; Lin J; Cui Y; Li X
    Mol Hortic; 2024 Apr; 4(1):16. PubMed ID: 38685126
    [No Abstract]   [Full Text] [Related]  

  • 58. Morphological analyses and variation in carbohydrate content during the maturation of somatic embryos of
    Vale EM; Reis RS; Passamani LZ; Santa-Catarina C; Silveira V
    Physiol Mol Biol Plants; 2018 Mar; 24(2):295-305. PubMed ID: 29515323
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Polyethylene glycol treatment promotes metabolic events associated with maize callus morphogenic competence.
    Lygin AV; Abdel-Rahman MM; Ulanov AV; Widholm JM; Lozovaya VV
    Phytochemistry; 2012 Oct; 82():46-55. PubMed ID: 22858115
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Biochemical features of maize tissues with different capacities to regenerate plants.
    Lozovaya V; Ulanov A; Lygin A; Duncan D; Widholm J
    Planta; 2006 Nov; 224(6):1385-99. PubMed ID: 16941117
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.