BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 22858130)

  • 1. Cadmium tolerance and accumulation characteristics of mature flax, cv. Hermes: contribution of the basal stem compared to the root.
    Douchiche O; Chaïbi W; Morvan C
    J Hazard Mater; 2012 Oct; 235-236():101-7. PubMed ID: 22858130
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of cadmium and mycorrhizal fungi on growth, fitness, and cadmium accumulation in flax (Linum usitatissimum; Linaceae).
    Hancock LM; Ernst CL; Charneskie R; Ruane LG
    Am J Bot; 2012 Sep; 99(9):1445-52. PubMed ID: 22912369
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Accumulation of cadmium, zinc, and copper by Helianthus annuus L.: impact on plant growth and uptake of nutritional elements.
    Rivelli AR; De Maria S; Puschenreiter M; Gherbin P
    Int J Phytoremediation; 2012 Apr; 14(4):320-34. PubMed ID: 22567714
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characteristics of cadmium tolerance in 'Hermes' flax seedlings: contribution of cell walls.
    Douchiche O; Soret-Morvan O; Chaïbi W; Morvan C; Paynel F
    Chemosphere; 2010 Dec; 81(11):1430-6. PubMed ID: 20884040
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cadmium tolerance and accumulation in eight potential energy crops.
    Shi G; Cai Q
    Biotechnol Adv; 2009; 27(5):555-61. PubMed ID: 19393309
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assessing the tolerance of castor bean to Cd and Pb for phytoremediation purposes.
    de Souza Costa ET; Guilherme LR; de Melo EE; Ribeiro BT; Dos Santos B Inácio E; da Costa Severiano E; Faquin V; Hale BA
    Biol Trace Elem Res; 2012 Jan; 145(1):93-100. PubMed ID: 21826609
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phytoextraction of Cd and Zn as single or mixed pollutants from soil by rape (Brassica napus).
    Cojocaru P; Gusiatin ZM; Cretescu I
    Environ Sci Pollut Res Int; 2016 Jun; 23(11):10693-10701. PubMed ID: 26884243
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Screen of Chinese weed species for cadmium tolerance and accumulation characteristics.
    Wei S; Zhou Q
    Int J Phytoremediation; 2008; 10(6):584-97. PubMed ID: 19260234
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of cadmium and arsenic on growth and metal accumulation of Cd-hyperaccumulator Solanum nigrum L.
    Sun Y; Zhou Q; Diao C
    Bioresour Technol; 2008 Mar; 99(5):1103-10. PubMed ID: 17719774
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of exogenous salicylic acid pre-treatment on cadmium toxicity and leaf lipid content in Linum usitatissimum L.
    Belkhadi A; Hediji H; Abbes Z; Nouairi I; Barhoumi Z; Zarrouk M; Chaïbi W; Djebali W
    Ecotoxicol Environ Saf; 2010 Jul; 73(5):1004-11. PubMed ID: 20399499
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cadmium availability in soil and retention in oak roots: potential for phytostabilization.
    Domínguez MT; Madrid F; Marañón T; Murillo JM
    Chemosphere; 2009 Jul; 76(4):480-6. PubMed ID: 19375778
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cadmium accumulation and strategies to avoid its toxicity in roots of the citrus rootstock Citrumelo.
    Podazza G; Arias M; Prado FE
    J Hazard Mater; 2012 May; 215-216():83-9. PubMed ID: 22410717
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cd tolerance and accumulation in the aquatic macrophyte, Chara australis: potential use for charophytes in phytoremediation.
    Clabeaux BL; Navarro DA; Aga DS; Bisson MA
    Environ Sci Technol; 2011 Jun; 45(12):5332-8. PubMed ID: 21568316
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Increase of Cd accumulation in five poplar (Populus L.) with different supply levels of Cd.
    Jun R; Ling T
    Int J Phytoremediation; 2012 Feb; 14(2):101-13. PubMed ID: 22567698
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cadmium accumulation in sunflower plants influenced by arbuscular mycorrhiza.
    de Andrade SA; da Silveira AP; Jorge RA; de Abreu MF
    Int J Phytoremediation; 2008; 10(1):1-13. PubMed ID: 18709928
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Flowering stage characteristics of cadmium hyperaccumulator Solanum nigrum L. and their significance to phytoremediation.
    Wei S; Zhou Q; Koval PV
    Sci Total Environ; 2006 Oct; 369(1-3):441-6. PubMed ID: 16859734
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of fertilizers on Cd uptake of Amaranthus hypochondriacus, a high biomass, fast growing and easily cultivated potential Cd hyperaccumulator.
    Li NY; Fu QL; Zhuang P; Guo B; Zou B; Li ZA
    Int J Phytoremediation; 2012 Feb; 14(2):162-73. PubMed ID: 22567702
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In-situ cadmium phytoremediation using Solanum nigrum L.: the bio-accumulation characteristics trail.
    Ji P; Song Y; Sun T; Liu Y; Cao X; Xu D; Yang X; McRae T
    Int J Phytoremediation; 2011; 13(10):1014-23. PubMed ID: 21972568
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of iron plaque on uptake and accumulation of Cd by rice (Oryza sativa L.) seedlings grown in soil.
    Liu H; Zhang J; Christie P; Zhang F
    Sci Total Environ; 2008 May; 394(2-3):361-8. PubMed ID: 18325566
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cadmium dynamics in the rhizosphere and Cd uptake of different plant species evaluated by a mechanistic model.
    Stritsis C; Steingrobe B; Claassen N
    Int J Phytoremediation; 2014; 16(7-12):1104-18. PubMed ID: 24933905
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.