These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 22858130)

  • 41. Cadmium phytoremediation potential of turnip compared with three common high Cd-accumulating plants.
    Li X; Zhang X; Li B; Wu Y; Sun H; Yang Y
    Environ Sci Pollut Res Int; 2017 Sep; 24(27):21660-21670. PubMed ID: 28752309
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The Optimal Root Length for Vetiveria zizanioides When Transplanted to Cd Polluted Soil.
    Chen XC; Liu YG; Zeng GM; Duan GF; Hu XJ; Hu X; Xu WH; Zou M
    Int J Phytoremediation; 2015; 17(1-6):563-7. PubMed ID: 25747243
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Screening ornamental plants to identify potential Cd hyperaccumulators for bioremediation.
    Wu M; Luo Q; Liu S; Zhao Y; Long Y; Pan Y
    Ecotoxicol Environ Saf; 2018 Oct; 162():35-41. PubMed ID: 29960120
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Translocation of metals from fly ash amended soil in the plant of Sesbania cannabina L. Ritz: effect on antioxidants.
    Sinha S; Gupta AK
    Chemosphere; 2005 Dec; 61(8):1204-14. PubMed ID: 16226293
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Characterization of cadmium ((108)Cd) distribution and accumulation in Tagetes erecta L. seedlings: effect of split-root and of remove-xylem/phloem.
    Qin Q; Li X; Wu H; Zhang Y; Feng Q; Tai P
    Chemosphere; 2013 Nov; 93(10):2284-8. PubMed ID: 24001667
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Tolerance and accumulation characteristics of cadmium in Amaranthus hybridus L.
    Zhang X; Zhang S; Xu X; Li T; Gong G; Jia Y; Li Y; Deng L
    J Hazard Mater; 2010 Aug; 180(1-3):303-8. PubMed ID: 20439133
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Potential of four forage grasses in remediation of Cd and Zn contaminated soils.
    Zhang X; Xia H; Li Z; Zhuang P; Gao B
    Bioresour Technol; 2010 Mar; 101(6):2063-6. PubMed ID: 20005700
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Evaluation of lead toxicity in Erica andevalensis as an alternative species for revegetation of contaminated soils.
    Mingorance MD; Leidi EO; Valdés B; Rossini Oliva S
    Int J Phytoremediation; 2012 Feb; 14(2):174-85. PubMed ID: 22567703
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Root endophytic fungus Piriformospora indica affected growth, cadmium partitioning and chlorophyll fluorescence of sunflower under cadmium toxicity.
    Shahabivand S; Parvaneh A; Aliloo AA
    Ecotoxicol Environ Saf; 2017 Nov; 145():496-502. PubMed ID: 28783599
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Cd-tolerant Suillus luteus: a fungal insurance for pines exposed to Cd.
    Krznaric E; Verbruggen N; Wevers JH; Carleer R; Vangronsveld J; Colpaert JV
    Environ Pollut; 2009 May; 157(5):1581-8. PubMed ID: 19211178
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Improvement of cadmium phytoremediation by Centella asiatica L. after soil inoculation with cadmium-resistant Enterobacter sp. FM-1.
    Li Y; Liu K; Wang Y; Zhou Z; Chen C; Ye P; Yu F
    Chemosphere; 2018 Jul; 202():280-288. PubMed ID: 29573613
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Effect of cadmium toxicity on nitrogen metabolism in leaves of Solanum nigrum L. as a newly found cadmium hyperaccumulator.
    Wang L; Zhou Q; Ding L; Sun Y
    J Hazard Mater; 2008 Jun; 154(1-3):818-25. PubMed ID: 18077088
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Cadmium translocation by contractile roots differs from that in regular, non-contractile roots.
    Lux A; Lackovič A; Van Staden J; Lišková D; Kohanová J; Martinka M
    Ann Bot; 2015 Jun; 115(7):1149-54. PubMed ID: 25939652
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Intraspecific variation in cadmium tolerance and accumulation of a high-biomass tropical tree Averrhoa carambola L.: implication for phytoextraction.
    Dai ZY; Shu WS; Liao B; Wan CY; Li JT
    J Environ Monit; 2011 Jun; 13(6):1723-9. PubMed ID: 21566812
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Prosopis juliflora--a green solution to decontaminate heavy metal (Cu and Cd) contaminated soils.
    Senthilkumar P; Prince WS; Sivakumar S; Subbhuraam CV
    Chemosphere; 2005 Sep; 60(10):1493-6. PubMed ID: 16054919
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Accumulation and localization of cadmium in Echinochloa polystachya grown within a hydroponic system.
    Solís-Domínguez FA; González-Chávez MC; Carrillo-González R; Rodríguez-Vázquez R
    J Hazard Mater; 2007 Mar; 141(3):630-6. PubMed ID: 16920257
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Bioavailability assessment and accumulation by five garden flower species grown in artificially cadmium-contaminated soils.
    Lin CC; Lai HY; Chen ZS
    Int J Phytoremediation; 2010 Jul; 12(5):454-67. PubMed ID: 21166288
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Cadmium and copper uptake and translocation in five willow (Salix L.) species.
    Kuzovkina YA; Knee M; Quigley MF
    Int J Phytoremediation; 2004; 6(3):269-87. PubMed ID: 15554478
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Growth conditions impact 2,2-bis(p-chlorophenyl)-1,1-dichloroethylene (p,p'-DDE) accumulation by Cucurbita pepo.
    Kelsey JW; Colino A; Koberle M; White JC
    Int J Phytoremediation; 2006; 8(3):261-71. PubMed ID: 17120529
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Cadmium distribution and microlocalization in oilseed rape (Brassica napus) after long-term growth on cadmium-contaminated soil.
    Carrier P; Baryla A; Havaux M
    Planta; 2003 Apr; 216(6):939-50. PubMed ID: 12687361
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.