These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
236 related articles for article (PubMed ID: 22858502)
1. Biosynthesis and characterization of polyhydroxyalkanoate containing high 3-hydroxyhexanoate monomer fraction from crude palm kernel oil by recombinant Cupriavidus necator. Wong YM; Brigham CJ; Rha C; Sinskey AJ; Sudesh K Bioresour Technol; 2012 Oct; 121():320-7. PubMed ID: 22858502 [TBL] [Abstract][Full Text] [Related]
2. Biosynthesis and characterization of poly(3-hydroxybutyrate-co-3- hydroxyhexanoate) from palm oil products in a Wautersia eutropha mutant. Loo CY; Lee WH; Tsuge T; Doi Y; Sudesh K Biotechnol Lett; 2005 Sep; 27(18):1405-10. PubMed ID: 16215858 [TBL] [Abstract][Full Text] [Related]
3. Evaluation of BP-M-CPF4 polyhydroxyalkanoate (PHA) synthase on the production of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) from plant oil using Cupriavidus necator transformants. Tan HT; Chek MF; Lakshmanan M; Foong CP; Hakoshima T; Sudesh K Int J Biol Macromol; 2020 Sep; 159():250-257. PubMed ID: 32417540 [TBL] [Abstract][Full Text] [Related]
4. Biosynthesis of P(3HB-co-3HHx) with improved molecular weights from a mixture of palm olein and fructose by Cupriavidus necator Re2058/pCB113. Murugan P; Gan CY; Sudesh K Int J Biol Macromol; 2017 Sep; 102():1112-1119. PubMed ID: 28476592 [TBL] [Abstract][Full Text] [Related]
5. Statistical optimization of P(3HB-co-3HHx) copolymers production by Cupriavidus necator PHB Trakunjae C; Boondaeng A; Apiwatanapiwat W; Janchai P; Neoh SZ; Sudesh K; Vaithanomsat P Sci Rep; 2023 Jun; 13(1):9005. PubMed ID: 37268758 [TBL] [Abstract][Full Text] [Related]
6. Characterization of an (R)-specific enoyl-CoA hydratase from Streptomyces sp. strain CFMR 7: A metabolic tool for enhancing the production of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate). Tan HT; Chek MF; Miyahara Y; Kim SY; Tsuge T; Hakoshima T; Sudesh K J Biosci Bioeng; 2022 Oct; 134(4):288-294. PubMed ID: 35953354 [TBL] [Abstract][Full Text] [Related]
7. Maximization of 3-hydroxyhexanoate fraction in poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) using lauric acid with engineered Cupriavidus necator H16. Oh SJ; Choi TR; Kim HJ; Shin N; Hwang JH; Kim HJ; Bhatia SK; Kim W; Yeon YJ; Yang YH Int J Biol Macromol; 2024 Jan; 256(Pt 2):128376. PubMed ID: 38007029 [TBL] [Abstract][Full Text] [Related]
8. Expression of Aeromonas caviae polyhydroxyalkanoate synthase gene in Burkholderia sp. USM (JCM15050) enables the biosynthesis of SCL-MCL PHA from palm oil products. Chee JY; Lau NS; Samian MR; Tsuge T; Sudesh K J Appl Microbiol; 2012 Jan; 112(1):45-54. PubMed ID: 22054430 [TBL] [Abstract][Full Text] [Related]
9. Increased recovery and improved purity of PHA from recombinant Cupriavidus necator. Anis SN; Iqbal NM; Kumar S; Al-Ashraf A Bioengineered; 2013; 4(2):115-8. PubMed ID: 23018620 [TBL] [Abstract][Full Text] [Related]
10. Evaluation of gene expression cassettes and production of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) with a fine modulated monomer composition by using it in Cupriavidus necator. Arikawa H; Matsumoto K Microb Cell Fact; 2016 Oct; 15(1):184. PubMed ID: 27793142 [TBL] [Abstract][Full Text] [Related]
12. Validation of thermally assisted hydrolysis and methylation-gas chromatography for rapid and direct compositional analysis of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) in whole bacterial cells. Baidurah S; Murugan P; Joyyi L; Fukuda J; Yamada M; Sudesh K; Ishida Y J Chromatogr A; 2016 Nov; 1471():186-191. PubMed ID: 27769532 [TBL] [Abstract][Full Text] [Related]
13. Biosynthesis and compositional regulation of poly[(3-hydroxybutyrate)-co-(3-hydroxyhexanoate)] in recombinant ralstonia eutropha expressing mutated polyhydroxyalkanoate synthase genes. Tsuge T; Saito Y; Kikkawa Y; Hiraishi T; Doi Y Macromol Biosci; 2004 Mar; 4(3):238-42. PubMed ID: 15468213 [TBL] [Abstract][Full Text] [Related]
14. Impact of various β-ketothiolase genes on PHBHHx production in Cupriavidus necator H16 derivatives. Arikawa H; Sato S Appl Microbiol Biotechnol; 2022 Apr; 106(8):3021-3032. PubMed ID: 35451630 [TBL] [Abstract][Full Text] [Related]
15. Enhanced recovery and purification of P(3HB-co-3HHx) from recombinant Cupriavidus necator using alkaline digestion method. Anis SN; Nurhezreen MI; Sudesh K; Amirul AA Appl Biochem Biotechnol; 2012 Jun; 167(3):524-35. PubMed ID: 22569781 [TBL] [Abstract][Full Text] [Related]
16. Compositional regulation of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) by replacement of granule-associated protein in Ralstonia eutropha. Kawashima Y; Orita I; Nakamura S; Fukui T Microb Cell Fact; 2015 Nov; 14():187. PubMed ID: 26597300 [TBL] [Abstract][Full Text] [Related]
17. Identification of Oil-Loving Shin Y; Kim HJ; Choi TR; Oh SJ; Kim S; Lee Y; Choi S; Oh J; Kim SY; Lee YS; Choi YH; Bhatia SK; Yang YH Polymers (Basel); 2024 Jun; 16(12):. PubMed ID: 38931989 [TBL] [Abstract][Full Text] [Related]
18. Pseudomonas putida KT2442 as a platform for the biosynthesis of polyhydroxyalkanoates with adjustable monomer contents and compositions. Tripathi L; Wu LP; Dechuan M; Chen J; Wu Q; Chen GQ Bioresour Technol; 2013 Aug; 142():225-31. PubMed ID: 23743426 [TBL] [Abstract][Full Text] [Related]
19. Improved artificial pathway for biosynthesis of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) with high C6-monomer composition from fructose in Ralstonia eutropha. Insomphun C; Xie H; Mifune J; Kawashima Y; Orita I; Nakamura S; Fukui T Metab Eng; 2015 Jan; 27():38-45. PubMed ID: 25446974 [TBL] [Abstract][Full Text] [Related]
20. Biosynthesis of polyhydroxyalkanoate copolymers from mixtures of plant oils and 3-hydroxyvalerate precursors. Lee WH; Loo CY; Nomura CT; Sudesh K Bioresour Technol; 2008 Oct; 99(15):6844-51. PubMed ID: 18325764 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]