These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
236 related articles for article (PubMed ID: 22858502)
41. Engineering of polyhydroxyalkanoate (PHA) synthase PhaC2Ps of Pseudomonas stutzeri via site-specific mutation for efficient production of PHA copolymers. Shen XW; Shi ZY; Song G; Li ZJ; Chen GQ Appl Microbiol Biotechnol; 2011 Aug; 91(3):655-65. PubMed ID: 21509565 [TBL] [Abstract][Full Text] [Related]
42. [Fermentative production of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx) by recombinant Aeromonas hydrophila 4AK4 (pTG01)]. Ouyang SP; Qiu YZ; Wu Q; Chen GQ Sheng Wu Gong Cheng Xue Bao; 2003 Nov; 19(6):709-14. PubMed ID: 15971584 [TBL] [Abstract][Full Text] [Related]
43. Production and optimization of polyhydroxyalkanoates from non-edible Calophyllum inophyllum oil using Cupriavidus necator. Arumugam A; Senthamizhan SG; Ponnusami V; Sudalai S Int J Biol Macromol; 2018 Jun; 112():598-607. PubMed ID: 29408394 [TBL] [Abstract][Full Text] [Related]
44. Controlled production of a polyhydroxyalkanoate (PHA) tetramer containing different mole fraction of 3-hydroxybutyrate (3HB), 3-hydroxyvalerate (3 HV), 4 HV and 5 HV units by engineered Cupriavidus necator. Oh SJ; Kim S; Lee Y; Shin Y; Choi S; Oh J; Bhatia SK; Joo JC; Yang YH Int J Biol Macromol; 2024 May; 266(Pt 2):131332. PubMed ID: 38574905 [TBL] [Abstract][Full Text] [Related]
45. Properties of degradable polyhydroxyalkanoates with different monomer compositions. Volova T; Kiselev E; Nemtsev I; Lukyanenko А; Sukovatyi A; Kuzmin A; Ryltseva G; Shishatskaya E Int J Biol Macromol; 2021 Jul; 182():98-114. PubMed ID: 33836189 [TBL] [Abstract][Full Text] [Related]
46. Chicken feather hydrolysate as an inexpensive complex nitrogen source for PHA production by Cupriavidus necator on waste frying oils. Benesova P; Kucera D; Marova I; Obruca S Lett Appl Microbiol; 2017 Aug; 65(2):182-188. PubMed ID: 28585326 [TBL] [Abstract][Full Text] [Related]
47. Construction of a stable plasmid vector for industrial production of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) by a recombinant Cupriavidus necator H16 strain. Sato S; Fujiki T; Matsumoto K J Biosci Bioeng; 2013 Dec; 116(6):677-81. PubMed ID: 23816763 [TBL] [Abstract][Full Text] [Related]
48. Modification of β-oxidation pathway in Ralstonia eutropha for production of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) from soybean oil. Insomphun C; Mifune J; Orita I; Numata K; Nakamura S; Fukui T J Biosci Bioeng; 2014 Feb; 117(2):184-190. PubMed ID: 23999062 [TBL] [Abstract][Full Text] [Related]
49. Biosynthesis of Poly(3HB- McGregor C; Minton NP; Kovács K ACS Synth Biol; 2021 Dec; 10(12):3343-3352. PubMed ID: 34762808 [TBL] [Abstract][Full Text] [Related]
50. Use of enzymes in extraction of polyhydroxyalkanoates produced by Cupriavidus necator. Neves A; Müller J Biotechnol Prog; 2012; 28(6):1575-80. PubMed ID: 22915526 [TBL] [Abstract][Full Text] [Related]
51. Discarded Egg Yolk as an Alternate Source of Poly(3-Hydroxybutyrate-co-3-hydroxyhexanoate). Hong YG; Moon YM; Hong JW; Choi TR; Jung HR; Yang SY; Jang DW; Park YR; Brigham C; Kim JS; Lee YK; Yang YH J Microbiol Biotechnol; 2019 Mar; 29(3):382-391. PubMed ID: 30661322 [TBL] [Abstract][Full Text] [Related]
52. Biosynthesis of polyhydroxyalkanoates from vegetable oil under the co-expression of fadE and phaJ genes in Cupriavidus necator. Flores-Sánchez A; Rathinasabapathy A; López-Cuellar MDR; Vergara-Porras B; Pérez-Guevara F Int J Biol Macromol; 2020 Dec; 164():1600-1607. PubMed ID: 32768477 [TBL] [Abstract][Full Text] [Related]
53. A study on the relation between poly(3-hydroxybutyrate) depolymerases or oligomer hydrolases and molecular weight of polyhydroxyalkanoates accumulating in Cupriavidus necator H16. Arikawa H; Sato S; Fujiki T; Matsumoto K J Biotechnol; 2016 Jun; 227():94-102. PubMed ID: 27059479 [TBL] [Abstract][Full Text] [Related]
54. Properties of Degradable Polyhydroxyalkanoates (PHAs) Synthesized by a New Strain, Zhila NO; Sapozhnikova KY; Kiselev EG; Vasiliev AD; Nemtsev IV; Shishatskaya EI; Volova TG Polymers (Basel); 2021 Sep; 13(18):. PubMed ID: 34578042 [TBL] [Abstract][Full Text] [Related]
55. Biosynthesis and characterization of 3-hydroxyalkanoate terpolyesters with adjustable properties by Aeromonas hydrophila. Zhang HF; Ma L; Wang ZH; Chen GQ Biotechnol Bioeng; 2009 Oct; 104(3):582-9. PubMed ID: 19517520 [TBL] [Abstract][Full Text] [Related]
56. Production of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) in recombinant Corynebacterium glutamicum using propionate as a precursor. Matsumoto K; Kitagawa K; Jo SJ; Song Y; Taguchi S J Biotechnol; 2011 Apr; 152(4):144-6. PubMed ID: 20692303 [TBL] [Abstract][Full Text] [Related]
57. High amounts of medium-chain-length polyhydroxyalkanoates subunits can be accumulated in recombinant Cupriavidus necator with wild-type synthase. Araceli FS; Juliana A R; Berenice VP; Fermin PG; Bruce A R J Biotechnol; 2022 Apr; 349():25-31. PubMed ID: 35341893 [TBL] [Abstract][Full Text] [Related]
58. Novel approach for productivity enhancement of polyhydroxyalkanoates (PHA) production by Cupriavidus necator DSM 545. Berezina N N Biotechnol; 2013 Jan; 30(2):192-5. PubMed ID: 22634022 [TBL] [Abstract][Full Text] [Related]
59. Gas fermentation combined with water electrolysis for production of polyhydroxyalkanoate copolymer from carbon dioxide by engineered Ralstonia eutropha. Di Stadio G; Orita I; Nakamura R; Fukui T Bioresour Technol; 2024 Feb; 394():130266. PubMed ID: 38159815 [TBL] [Abstract][Full Text] [Related]
60. Development and validation of an HPLC-based screening method to acquire polyhydroxyalkanoate synthase mutants with altered substrate specificity. Watanabe Y; Ichinomiya Y; Shimada D; Saika A; Abe H; Taguchi S; Tsuge T J Biosci Bioeng; 2012 Mar; 113(3):286-92. PubMed ID: 22088761 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]