These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
222 related articles for article (PubMed ID: 22858671)
1. Transport and retention of fullerene (nC60) nanoparticles in unsaturated porous media: effects of solution chemistry and solid phase coating. Chen L; Sabatini DA; Kibbey TC J Contam Hydrol; 2012 Sep; 138-139():104-12. PubMed ID: 22858671 [TBL] [Abstract][Full Text] [Related]
2. Retention and release of TiO2 nanoparticles in unsaturated porous media during dynamic saturation change. Chen L; Sabatini DA; Kibbey TC J Contam Hydrol; 2010 Nov; 118(3-4):199-207. PubMed ID: 20739092 [TBL] [Abstract][Full Text] [Related]
3. Transport of fullerene nanoparticles (nC60) in saturated sand and sandy soil: controlling factors and modeling. Zhang L; Hou L; Wang L; Kan AT; Chen W; Tomson MB Environ Sci Technol; 2012 Jul; 46(13):7230-8. PubMed ID: 22681192 [TBL] [Abstract][Full Text] [Related]
4. Modeling the transport and retention of nC60 nanoparticles in the subsurface under different release scenarios. Bai C; Li Y J Contam Hydrol; 2012 Aug; 136-137():43-55. PubMed ID: 22683828 [TBL] [Abstract][Full Text] [Related]
5. Cotransport of titanium dioxide and fullerene nanoparticles in saturated porous media. Cai L; Tong M; Ma H; Kim H Environ Sci Technol; 2013 Jun; 47(11):5703-10. PubMed ID: 23662648 [TBL] [Abstract][Full Text] [Related]
6. UV irradiation and humic acid mediate aggregation of aqueous fullerene (nC₆₀) nanoparticles. Qu X; Hwang YS; Alvarez PJ; Bouchard D; Li Q Environ Sci Technol; 2010 Oct; 44(20):7821-6. PubMed ID: 20866048 [TBL] [Abstract][Full Text] [Related]
7. Detachment of fullerene nC60 nanoparticles in saturated porous media under flow/stop-flow conditions: Column experiments and mechanistic explanations. Wang Z; Wang D; Li B; Wang J; Li T; Zhang M; Huang Y; Shen C Environ Pollut; 2016 Jun; 213():698-709. PubMed ID: 27023279 [TBL] [Abstract][Full Text] [Related]
8. Impact of sunlight and humic acid on the deposition kinetics of aqueous fullerene nanoparticles (nC60). Qu X; Alvarez PJ; Li Q Environ Sci Technol; 2012 Dec; 46(24):13455-62. PubMed ID: 23157776 [TBL] [Abstract][Full Text] [Related]
9. Enhanced transport of 2,2',5,5'-polychlorinated biphenyl by natural organic matter (NOM) and surfactant-modified fullerene nanoparticles (nC60). Wang L; Huang Y; Kan AT; Tomson MB; Chen W Environ Sci Technol; 2012 May; 46(10):5422-9. PubMed ID: 22500825 [TBL] [Abstract][Full Text] [Related]
10. Fullerene nanoparticles exhibit greater retention in freshwater sediment than in model porous media. Zhang W; Isaacson CW; Rattanaudompol US; Powell TB; Bouchard D Water Res; 2012 Jun; 46(9):2992-3004. PubMed ID: 22445188 [TBL] [Abstract][Full Text] [Related]
11. Contaminant-mobilizing capability of fullerene nanoparticles (nC60): Effect of solvent-exchange process in nC60 formation. Wang L; Fortner JD; Hou L; Zhang C; Kan AT; Tomson MB; Chen W Environ Toxicol Chem; 2013 Feb; 32(2):329-36. PubMed ID: 23172734 [TBL] [Abstract][Full Text] [Related]
12. Influence of biofilm on the transport of fullerene (C60) nanoparticles in porous media. Tong M; Ding J; Shen Y; Zhu P Water Res; 2010 Feb; 44(4):1094-103. PubMed ID: 19875145 [TBL] [Abstract][Full Text] [Related]
13. Transport and retention of TiO Hoggan JL; Sabatini DA; Kibbey TCG J Contam Hydrol; 2016 Nov; 194():30-35. PubMed ID: 27780094 [TBL] [Abstract][Full Text] [Related]
14. Altered transport of lindane caused by the retention of natural particles in saturated porous media. Ngueleu SK; Grathwohl P; Cirpka OA J Contam Hydrol; 2014 Jul; 162-163():47-63. PubMed ID: 24859485 [TBL] [Abstract][Full Text] [Related]
15. Coupled effects of solution chemistry and hydrodynamics on the mobility and transport of quantum dot nanomaterials in the vadose zone. Uyusur B; Darnault CJ; Snee PT; Kokën E; Jacobson AR; Wells RR J Contam Hydrol; 2010 Nov; 118(3-4):184-98. PubMed ID: 21056511 [TBL] [Abstract][Full Text] [Related]
16. Transport and retention of TiO2 rutile nanoparticles in saturated porous media under low-ionic-strength conditions: measurements and mechanisms. Chen G; Liu X; Su C Langmuir; 2011 May; 27(9):5393-402. PubMed ID: 21446737 [TBL] [Abstract][Full Text] [Related]
17. Transport behavior of selected nanoparticles with different surface coatings in granular porous media coated with Pseudomonas aeruginosa biofilm. Tripathi S; Champagne D; Tufenkji N Environ Sci Technol; 2012 Jul; 46(13):6942-9. PubMed ID: 22148225 [TBL] [Abstract][Full Text] [Related]
18. Transport and retention of fullerene nanoparticles in natural soils. Wang Y; Li Y; Kim H; Walker SL; Abriola LM; Pennell KD J Environ Qual; 2010; 39(6):1925-33. PubMed ID: 21284289 [TBL] [Abstract][Full Text] [Related]
19. Surfactant solutions and porous substrates: spreading and imbibition. Starov VM Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660 [TBL] [Abstract][Full Text] [Related]
20. Transport and retention of carbon dots (CDs) in saturated and unsaturated porous media: Role of ionic strength, pH, and collector grain size. Kamrani S; Rezaei M; Kord M; Baalousha M Water Res; 2018 Apr; 133():338-347. PubMed ID: 28864305 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]