BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 22858692)

  • 1. Effects of dimethylolpropionic acid modification on the characteristics of polyethylene terephthalate fibers.
    Huang Z; Bi L; Zhang Z; Han Y
    Mol Med Rep; 2012 Oct; 6(4):709-15. PubMed ID: 22858692
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Grafting of dermatan sulfate on polyethylene terephtalate to enhance biointegration.
    Dhahri M; Abed A; Lajimi RH; Mansour MB; Gueguen V; Abdesselem SB; Chaubet F; Letourneur D; Meddahi-Pellé A; Maaroufi RM
    J Biomed Mater Res A; 2011 Jul; 98(1):114-21. PubMed ID: 21548062
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nano/micro electro-spun polyethylene terephthalate fibrous mat preparation and characterization.
    Hadjizadeh A; Ajji A; Bureau MN
    J Mech Behav Biomed Mater; 2011 Apr; 4(3):340-51. PubMed ID: 21316622
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Durable grafting of silkworm pupa protein onto the surface of polyethylene terephthalate fibers.
    Zhou J; Zheng D; Zhang F; Zhang G
    Mater Sci Eng C Mater Biol Appl; 2016 Dec; 69():1290-6. PubMed ID: 27612829
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Preparation and biocompatibility of grafted functional β-cyclodextrin copolymers from the surface of PET films.
    Jiang Y; Liang Y; Zhang H; Zhang W; Tu S
    Mater Sci Eng C Mater Biol Appl; 2014 Aug; 41():1-7. PubMed ID: 24907730
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development and in vitro studies of a polyethylene terephthalate-gold nanoparticle scaffold for improved biocompatibility.
    Whelove OE; Cozad MJ; Lee BD; Sengupta S; Bachman SL; Ramshaw BJ; Grant SA
    J Biomed Mater Res B Appl Biomater; 2011 Oct; 99(1):142-9. PubMed ID: 21714079
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modification of polyethylene terephthalate (Dacron) via denier reduction: effects on material tensile strength, weight, and protein binding capabilities.
    Phaneuf MD; Quist WC; Bide MJ; LoGerfo FW
    J Appl Biomater; 1995; 6(4):289-99. PubMed ID: 8589514
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Silk fibroin immobilization on poly(ethylene terephthalate) films: comparison of two surface modification methods and their effect on mesenchymal stem cells culture.
    Liang M; Yao J; Chen X; Huang L; Shao Z
    Mater Sci Eng C Mater Biol Appl; 2013 Apr; 33(3):1409-16. PubMed ID: 23827589
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Physico-chemical and biological evaluation of excimer laser irradiated polyethylene terephthalate (pet) surfaces.
    Mayer G; Blanchemain N; Dupas-Bruzek C; Miri V; Traisnel M; Gengembre L; Derozier D; Hildebrand HF
    Biomaterials; 2006 Feb; 27(4):553-66. PubMed ID: 16024074
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Surface modification on polyethylene terephthalate films with 2-methacryloyloxyethyl phosphorylcholine.
    Zheng Z; Ren L; Zhai Z; Wang Y; Hang F
    Mater Sci Eng C Mater Biol Appl; 2013 Jul; 33(5):3041-6. PubMed ID: 23623130
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of functionalized polyethylene terephthalate with immobilized NTPDase and cysteine.
    Muthuvijayan V; Gu J; Lewis RS
    Acta Biomater; 2009 Nov; 5(9):3382-93. PubMed ID: 19477307
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enzymatic surface modification and functionalization of PET: a water contact angle, FTIR, and fluorescence spectroscopy study.
    Donelli I; Taddei P; Smet PF; Poelman D; Nierstrasz VA; Freddi G
    Biotechnol Bioeng; 2009 Aug; 103(5):845-56. PubMed ID: 19365872
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Effect of plasma modification on biological properties of polyethylene terephthalate foil].
    Staniszewska-Kuś J; Paluch D; Szymonowicz M; Pigłowski J; Gancarz I
    Polim Med; 1994; 24(1-2):3-19. PubMed ID: 7971532
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Surface engineering of electrospun polyethylene terephthalate (PET) nanofibers towards development of a new material for blood vessel engineering.
    Ma Z; Kotaki M; Yong T; He W; Ramakrishna S
    Biomaterials; 2005 May; 26(15):2527-36. PubMed ID: 15585255
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of bioactive strontium-substituted hydroxyapatite on osseointegration of polyethylene terephthalate artificial ligaments.
    Ma P; Chen T; Wu X; Hu Y; Huang K; Wang Y; Dai H
    J Mater Chem B; 2021 Sep; 9(33):6600-6613. PubMed ID: 34369537
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improved blood compatibility of poly(ethylene terephthalate) films modified with L-arginine.
    Liu Y; Chen JR; Yang Y; Wu F
    J Biomater Sci Polym Ed; 2008; 19(4):497-507. PubMed ID: 18318961
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Increase in cell adhesiveness on a poly(ethylene terephthalate) fabric by sintered hydroxyapatite nanocrystal coating in the development of an artificial blood vessel.
    Furuzono T; Masuda M; Okada M; Yasuda S; Kadono H; Tanaka R; Miyatake K
    ASAIO J; 2006; 52(3):315-20. PubMed ID: 16760722
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intelligent thermoresponsive substrate from modified overhead projection sheet as a tool for construction and support of cell sheets in vitro.
    Nithya J; Kumar PR; Tilak P; Leena J; Sreenivasan K; Kumary TV
    Tissue Eng Part C Methods; 2011 Feb; 17(2):181-91. PubMed ID: 20722463
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Piezoelectric PU/PVDF electrospun scaffolds for wound healing applications.
    Guo HF; Li ZS; Dong SW; Chen WJ; Deng L; Wang YF; Ying DJ
    Colloids Surf B Biointerfaces; 2012 Aug; 96():29-36. PubMed ID: 22503631
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effects of amorphous carbon films deposited on polyethylene terephthalate on bacterial adhesion.
    Wang J; Huang N; Yang P; Leng YX; Sun H; Liu ZY; Chu PK
    Biomaterials; 2004 Jul; 25(16):3163-70. PubMed ID: 14980411
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.