These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 22858903)

  • 1. Joining plasmonics with microfluidics: from convenience to inevitability.
    Kim J
    Lab Chip; 2012 Oct; 12(19):3611-23. PubMed ID: 22858903
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A disposable polymer sensor chip combined with micro-fluidics and surface plasmon read-out.
    Zhang N; Liu H; Knoll W
    Biosens Bioelectron; 2009 Feb; 24(6):1783-7. PubMed ID: 18835707
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optofluidic devices and applications in photonics, sensing and imaging.
    Pang L; Chen HM; Freeman LM; Fainman Y
    Lab Chip; 2012 Oct; 12(19):3543-51. PubMed ID: 22810383
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optofluidic approaches for enhanced microsensor performances.
    Testa G; Persichetti G; Bernini R
    Sensors (Basel); 2014 Dec; 15(1):465-84. PubMed ID: 25558989
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Integrated extended-nano chemical systems on a chip.
    Tsukahara T; Mawatari K; Kitamori T
    Chem Soc Rev; 2010 Mar; 39(3):1000-13. PubMed ID: 20179821
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Merging microfluidics with microarray-based bioassays.
    Situma C; Hashimoto M; Soper SA
    Biomol Eng; 2006 Oct; 23(5):213-31. PubMed ID: 16905357
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Extended-nano fluidic systems for analytical and chemical technologies.
    Mawatari K; Tsukahara T; Sugii Y; Kitamori T
    Nanoscale; 2010 Sep; 2(9):1588-95. PubMed ID: 20820689
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Theory of molecular excitation and relaxation near a plasmonic device.
    Colas des Francs G; Girard C; Laroche T; Lévèque G; Martin OJ
    J Chem Phys; 2007 Jul; 127(3):034701. PubMed ID: 17655449
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Photo-actuation of liquids for light-driven microfluidics: state of the art and perspectives.
    Baigl D
    Lab Chip; 2012 Oct; 12(19):3637-53. PubMed ID: 22864577
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Non-equilibrium electrokinetic micro/nano fluidic mixer.
    Kim D; Raj A; Zhu L; Masel RI; Shannon MA
    Lab Chip; 2008 Apr; 8(4):625-8. PubMed ID: 18369520
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Surface plasmon waveguide Schottky detector.
    Akbari A; Tait RN; Berini P
    Opt Express; 2010 Apr; 18(8):8505-14. PubMed ID: 20588697
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recent advancement in induced-charge electrokinetic phenomena and their micro- and nano-fluidic applications.
    Feng H; Chang H; Zhong X; Wong TN
    Adv Colloid Interface Sci; 2020 Jun; 280():102159. PubMed ID: 32344205
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The morphology of DNA solution in an open fluidic channel studied by non-contact AFM.
    Wang KG; Wang L; Li J; Xu GW; Jin AZ; Gu CZ; Liu WQ; Niu HB
    Micron; 2008 Jun; 39(4):481-5. PubMed ID: 17353127
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spectral tuning of localised surface plasmon-polariton resonance in metallic nano-crescents.
    Kim J; Liu GL; Lu Y; Lee LP
    IEE Proc Nanobiotechnol; 2006 Jun; 153(3):42-6. PubMed ID: 16796398
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Plasmonics: merging photonics and electronics at nanoscale dimensions.
    Ozbay E
    Science; 2006 Jan; 311(5758):189-93. PubMed ID: 16410515
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Control of bio-MEMS surface chemical properties in micro fluidic devices for biological applications.
    Dhayal M; So C; Choi JS; Jun J
    J Nanosci Nanotechnol; 2006 Nov; 6(11):3494-8. PubMed ID: 17252797
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficient energy based modeling and experimental validation of liquid filling in planar micro-fluidic components and networks.
    Treise I; Fortner N; Shapiro B; Hightower A
    Lab Chip; 2005 Mar; 5(3):285-97. PubMed ID: 15726205
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Three-dimensional fluidic self-assembly by axis translation of two-dimensionally fabricated microcomponents in railed microfluidics.
    Chung SE; Jung Y; Kwon S
    Small; 2011 Mar; 7(6):796-803. PubMed ID: 21322106
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Surface plasmon polariton analogue to Young's double-slit experiment.
    Zia R; Brongersma ML
    Nat Nanotechnol; 2007 Jul; 2(7):426-9. PubMed ID: 18654327
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Integration of a surface acoustic wave biosensor in a microfluidic polymer chip.
    Länge K; Blaess G; Voigt A; Götzen R; Rapp M
    Biosens Bioelectron; 2006 Aug; 22(2):227-32. PubMed ID: 16458497
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.