These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 22858903)

  • 21. A system for micro/nano fluidic flow diagnostics.
    Nath P; Roy S; Conlisk T; Fleischman AJ
    Biomed Microdevices; 2005 Sep; 7(3):169-77. PubMed ID: 16133803
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Multiphase flow in microfluidic systems --control and applications of droplets and interfaces.
    Shui L; Eijkel JC; van den Berg A
    Adv Colloid Interface Sci; 2007 May; 133(1):35-49. PubMed ID: 17445759
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Observation of few-cycle, strong-field phenomena in surface plasmon fields.
    Dombi P; Irvine SE; Rácz P; Lenner M; Kroó N; Farkas G; Mitrofanov A; Baltuška A; Fuji T; Krausz F; Elezzabi AY
    Opt Express; 2010 Nov; 18(23):24206-12. PubMed ID: 21164766
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Hybrid long-range surface plasmon-polariton modes with tight field confinement guided by asymmetrical waveguides.
    Chen J; Li Z; Yue S; Gong Q
    Opt Express; 2009 Dec; 17(26):23603-9. PubMed ID: 20052069
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Sub-wavelength nanofluidics in photonic crystal sensors.
    Huang M; Yanik AA; Chang TY; Altug H
    Opt Express; 2009 Dec; 17(26):24224-33. PubMed ID: 20052133
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Charge transport in nanoscale junctions.
    Albrecht T; Kornyshev A; Bjørnholm T
    J Phys Condens Matter; 2008 Sep; 20(37):370301. PubMed ID: 21694407
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Three-dimensional surface microfluidics enabled by spatiotemporal control of elastic fluidic interface.
    Hong L; Pan T
    Lab Chip; 2010 Dec; 10(23):3271-6. PubMed ID: 20931123
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Review on recent and advanced applications of monoliths and related porous polymer gels in micro-fluidic devices.
    Vázquez M; Paull B
    Anal Chim Acta; 2010 Jun; 668(2):100-13. PubMed ID: 20493286
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Plasmon-polariton band structures of asymmetric T-shaped plasmonic gratings.
    Abbas MN; Chang YC; Shih MH
    Opt Express; 2010 Feb; 18(3):2509-14. PubMed ID: 20174078
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Surface plasmon polariton amplification in metal-semiconductor structures.
    Fedyanin DY; Arsenin AV
    Opt Express; 2011 Jun; 19(13):12524-31. PubMed ID: 21716493
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Conducting polymer electrochemical switching as an easy means for designing active plasmonic devices.
    Leroux YR; Lacroix JC; Chane-Ching KI; Fave C; Félidj N; Lévi G; Aubard J; Krenn JR; Hohenau A
    J Am Chem Soc; 2005 Nov; 127(46):16022-3. PubMed ID: 16287278
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Opto-fluidic micro-ring resonator for sensitive label-free viral detection.
    Zhu H; White IM; Suter JD; Zourob M; Fan X
    Analyst; 2008 Mar; 133(3):356-60. PubMed ID: 18299750
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Miniaturized total analysis systems: integration of electronics and fluidics using low-temperature co-fired ceramics.
    Martínez-Cisneros CS; Ibáñez-García N; Valdés F; Alonso J
    Anal Chem; 2007 Nov; 79(21):8376-80. PubMed ID: 17922556
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Low-loss hybrid plasmonic waveguide with double low-index nano-slots.
    Dai D; He S
    Opt Express; 2010 Aug; 18(17):17958-66. PubMed ID: 20721182
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A perfusion-based micro opto-fluidic system (PMOFS) for continuously in-situ immune sensing.
    Tseng YT; Yang CS; Tseng FG
    Lab Chip; 2009 Sep; 9(18):2673-82. PubMed ID: 19704983
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Theory of noise in high-gain surface plasmon-polariton amplifiers incorporating dipolar gain media.
    De Leon I; Berini P
    Opt Express; 2011 Oct; 19(21):20506-17. PubMed ID: 21997058
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Micro-separation toward systems biology.
    Liu BF; Xu B; Zhang G; Du W; Luo Q
    J Chromatogr A; 2006 Feb; 1106(1-2):19-28. PubMed ID: 16236294
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Plasmonic optical trap having very large active volume realized with nano-ring structure.
    Kang Z; Zhang H; Lu H; Xu J; Ong HC; Shum P; Ho HP
    Opt Lett; 2012 May; 37(10):1748-50. PubMed ID: 22627558
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Sub-micron free-standing metal slabs with dielectric nano-voids of arbitrary shapes embedded beneath atomically-flat surface.
    Kho KW; Shen Z; Olivo M
    Opt Express; 2011 May; 19(11):10518-35. PubMed ID: 21643307
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Integrated plasmonic semi-circular launcher for dielectric-loaded surface plasmon-polariton waveguide.
    Li X; Huang L; Tan Q; Bai B; Jin G
    Opt Express; 2011 Mar; 19(7):6541-8. PubMed ID: 21451682
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.